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1. Introduction

The gauge theory/gravity correspondence [1 – 3] has provided deep and unexpected links

between string theory on negatively curved spacetime, large N quantum field theories and

spin chains. For example, according to the correspondence, the masses of states in the

string theory coincide with anomalous dimensions of operators in the field theory. These

anomalous dimensions are also given by the spectrum of a spin chain. In this article we will

study the original example of the correspondence, which relates N = 4 super Yang-Mills

theory to type IIB string theory on the AdS5×S5 background.

The correspondence is a strong/weak coupling duality in the ’t Hooft coupling of the

field theory. Therefore, computations that can be carried out on both sides of the correspon-

dence necessarily compute quantities that are not corrected or receive small corrections,

allowing weak coupling results to be extrapolated to strong coupling. As an example,

an interesting set of observables to consider are dual to single graviton perturbations of
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AdS5×S5. These perturbations are members of a BPS multiplet so that their energies are

protected by supersymmetry. For these observables, one could also test that AdS/CFT

reproduces the correct field theory correlation functions.

Part of the difficulty in understanding the AdS/CFT correspondence is related to the

fact that we do not as yet have a good understanding of how to quantize the superstring

in this background. There are however, interesting geometric limits where the string can

be quantized exactly [4]. On the field theory side, one takes a different large N limit -

the energy and R-charges of the observables are also scaled in the new limit [5]. The

result is a systematic way to relax the supersymmetry enjoyed by a state. The operators

which one obtains (BMN loops) are nearly supersymmetric, and consequently although

they are corrected, the perturbation theory is suppressed by the large quantum numbers

of the states in question. This allowed the use of perturbation theory to explore the

strong coupling regime of the gauge theory and consequently, truly stringy aspects of the

AdS/CFT correspondence could be probed.

The single graviton observables could be studied, on the gravity side of the corre-

spondence, using a supergravity approximation. The states dual to BMN loops could be

studied within the framework of perturbative string theory in the pp-wave limit. However,

we should be able to do even more. The AdS/CFT correspondence is a non-perturbative

equivalence, and hence should also allow one to understand non perturbative objects in

string theory on the AdS geometry. Since we only have control over the weakly coupled

limit of the field theory, we still want to study objects that are protected. Giant gravitons

are good examples of protected non perturbative objects. Indeed, since they are half-BPS

states, giant gravitons have proved to be the source of many valuable quantities that are

accessible on both sides of the correspondence.

Giant graviton solutions describe branes extended in the sphere [6] or in the AdS

space [7 – 9] of the AdS×S background. The giant gravitons are (classically) stable due

to the presence of the five form flux which produces a force that exactly balances their

tension. The dual description of giant gravitons in the Yang-Mills theory has enjoyed

some progress. Operators dual to giant gravitons (Schur polynomials in the Higgs fields)

have been proposed in [10, 11]. However, despite compelling evidence (reviewed in section

2.1) for the identification of Schur polynomials as the operators dual to giant gravitons,

a detailed understanding of this correspondence has not yet been achieved. For example,

even a basic understanding of how the geometry of the giant graviton is coded in the dual

operator, is not complete.

Excitations of giant gravitons can be obtained by attaching open strings to the giants.

The gauge theory operators dual to excited sphere giants are known and their anomalous

dimensions reproduce the expected open string spectrum [12]1 Recently, operators dual

to an arbitrary system of excited giant gravitons have been proposed in the insightful

paper [16]. The proposal has been tested by showing that the restrictions imposed on

excitations of the system, by the Gauss law, are indeed satisfied. For the general case, it is

1See [13 – 15] for further studies of non-BPS excitations that have been interpreted as open strings

attached to giant gravitons.
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an involved combinatoric task to compute the two point functions of these operators (even

in the free field limit) and further to compute their anomalous dimensions. Our goal in

this article is to start developing the required technology.

The study of excitations of giant gravitons is likely to shed light on the precise details of

the Schur polynomial/giant graviton correspondence, which is one of the main motivations

for our study. Concretely, we study two point functions in the free theory, of operators dual

to excited giant graviton systems. With a specific choice for the open string excitations,

we can factorize the problem of computing correlators into a factor involving only the open

string words and a factor involving the Schur polynomial itself. The factor involving the

open string words can be dealt with using the usual 1
N expansion. The factor involving

the Schur polynomial contains O(N) fields, so that huge combinatoric factors over power

the usual 1
N2 suppression of non-planar diagrams and new techniques for evaluating these

factors are needed. We develop the required technology. Our result is a set of simple

geometrical operations performed on the Young diagram labeling the operator, allowing

an efficient computation of the factor involving the Schur polynomials. In this article

we deal with the free field theory. However, it is possible to extend our rules, providing

efficient methods that allow the computation of the leading g2
Y M correction coming from

the F -terms. This is reported in a separate paper [17].

The world volume theory of giant gravitons at low energy is a Yang-Mills theory. Since

the world volume of the giant gravitons does not coincide with the spacetime on which the

original Yang-Mills theory is defined, this new Yang-Mills theory (which “emerges” from

the original one) will be local in a new space [16], which arises from the matrix degrees of

freedom of the original field theory. Our main application for the methods developed in

this article, is to explore this emergent Yang-Mills theory. In particular, we have studied

gravitational radiation by giant gravitons and bound states of giant gravitons, transitions

between excited giant graviton states and the joining and splitting of open strings attached

to the giant. The results of our study seem to be consistent with an emergent gauge theory.

Our article is organized as follows: In section 2 we start by reviewing the Schur poly-

nomial/giant graviton correspondence. We then introduce the operators which are con-

jectured to be dual to excited giant gravitons. Section 2 concludes by summarizing three

graphical rules which allow the computation of two point correlators. The technical details

of the derivation of the rules are summarized in the appendices. These technical details are

not needed to master the rules, which are presented (together with examples) in sections

2.5 and 2.6. A reader wishing only to use our results, need not read more than sections 2.2,

2.3, 2.4 and 2.5. Since the computations involved are rather technical, we have taken the

quality assurance of our methods seriously. Towards this end, we have written a MATLAB

code which numerically evaluates the correlation functions we study. In appendix J some

of these numerical results are summarized. We have verified that our methods correctly

reproduce all correlators corresponding to Young diagrams with 5 boxes or less and with

two or fewer strings attached.

Section 3 summarizes applications of our methods. In section 3.1 we study gravitational

radiation in a number of different settings. This allows us to probe locality in the bulk and

also the non-Abelian symmetry of the emergent gauge theory. In section 3.2 we consider
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transitions between excited giant graviton states. In section 3.3 we study the splitting and

joining of open strings attached to the giant graviton. The results of this section seem to

be consistent with a 3 + 1 dimensional emergent gauge theory. Section 4 is used to discuss

our results.

2. The dual of excited giant gravitons

In this section the operators we study are defined. In the free field limit there is a simple

factorization of the spacetime dependence and the factor arising from the color combi-

natorics [18]. The spacetime dependence is trivial and consequently, uninteresting. For

this reason, we drop all spacetime dependence and focus on the color combinatorics. This

amounts to working in zero dimensions. The reader interested in a summary of our main

results should consult section 2.2 for the definition of the operators we study and section

2.5 for a summary of our technology.

We study the Lorentzian N = 4 super Yang-Mills theory on R×S3. The advantage of

taking this approach is simply that 1/2-BPS states (and systematically small deformations

of these states) of the theory on R × S3 can be described in the s-wave reduction of

the Yang-Mills theory, i.e. in a matrix quantum mechanics [19]. According to the state-

operator correspondence of conformal field theory, the generator associated to dilations

on R4 becomes the Hamiltonian for the theory on R × S3. The action of N = 4 super

Yang-Mills theory on R × S3 is

S =
N

4πλ

∫

dt

∫

S3

dΩ3

2π2

(

1

2
(Dφi)(Dφi) +

1

4
([φi, φj ])2 − 1

2
φiφi

)

,

where λ = g2
YMN is the ’t Hooft coupling and i, j = 1, . . . , 6. We have not displayed the

fermion or the gauge kinetic terms in the action; in this article we only consider the scalar

fields. The mass term arises from conformal coupling to the metric of S3. We group the

six real scalars into three complex fields as follows

Z = φ1 + iφ2, Y = φ3 + iφ4, X = φ5 + iφ6.

In what follows we will use these complex combinations. The free field theory propagators

we use are

〈Z†
ij(t)Zkl(t)〉 = δilδjk = 〈Y †

ij(t)Ykl(t)〉.

We should have a factor of 4πλ
N multiplying the propagator. We have dropped this factor,

which clutters formulas and can easily be reinserted at the end of the computation; it con-

tributes an overall factor of
(

4πλ
N

)m
, where m is the total number of contractions performed

in computing the correlator.

2.1 Giants

There are a number of important clues that can be used to identify the operators dual to

giant gravitons. We will study a class of half BPS giant gravitons. The half BPS chiral

primary operators we focus on can be built from a single complex combination (we use Z
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in what follows) of any two of the six Higgs fields appearing in the N = 4 super Yang-Mills

theory. Using a total of n Zs, there is a distinct operator for each partition of n. There

is a one to one correspondence between these operators and half BPS representations of R

charge n [10]. For n = O(1) these half BPS operators are dual to point like gravitons [3],

for n = O(
√

N) they are dual to strings [5] and for n = O(N) they are dual to giant

gravitons [6]. For the case that n = O(1), operators composed of a product of a different

number traces are orthogonal. This naturally allows one to identify the number of traces

with particle number and consequently, the supergravity Fock space is clearly visible in

the dual gauge theory. For n = O(N), the usual suppression of non-planar diagrams is

compensated by combinatoric factors, so that operators composed of a product of a different

number of traces, are no longer orthogonal. Clearly then, giant gravitons are not simply

dual to operators with a fixed number of traces. One needs a new basis in which the two

point functions are again diagonal.

Corley, Jevicki and Ramgoolam have developed a powerful machinery for the exact

computation of correlators of Schur polynomials in the zero coupling limit of N = 4 super

Yang-Mills theory with gauge group U(N) [10]. Their results show that the two point

function is diagonalized by the Schur polynomials. It is thus tempting to identify Schur

polynomials as the operators dual to giant gravitons [10].

The Schur polynomial is defined by

χR(Z) =
1

n!

∑

σ∈Sn

χR(σ)Tr (σZ⊗n), (2.1)

Tr (σZ⊗n) = Zi1
iσ(1)

Zi2
iσ(2)

· · ·Zin−1

iσ(n−1)
Zin

iσ(n)
.

The Schur polynomial label R can be thought of as a Young diagram which has n boxes.

χR(σ) is the character of σ ∈ Sn in representation R. These operators have conformal

dimension ∆ = n and R charge J = n and transform in the (0, n, 0) of the SU(4) R
symmetry group. Of course, ∆ = J as expected for a half BPS operator. To state the

known results for correlators of Schur polynomials, we need to recall the definition of the

weight of a box in a Young diagram. For a box in the ith row and the jth column the weight

is N − i + j. Let fR denote the product of weights in the Young diagram. For example, if

R1 = R2 = ,

we have

fR1 = N(N + 1)(N − 1)N(N − 2), fR2 = N(N + 1)(N + 2)(N + 3).

The two and three point functions of Schur polynomials, which we use extensively in what

follows, are [10]

〈χR(Z)χS(Z†)〉 = δRSfR,

〈χR(Z)χS(Z)χT (Z†)〉 = g(R,S;T )fT ,
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where g(R,S;T ) is the Littlewood-Richardson coefficient. For an impressive development

of the technology for Schur Polynomials of the U(N) theory, see [20]. For an extension to

the SU(N) theory see [20, 21].

Besides the fact that these operators are half BPS and diagonalize the two point

function, they capture further features of giant graviton dynamics. To see this, recall

that a giant graviton expands to a radius proportional to the square root of its angular

momentum [6]. If the giant is expanding in the S5 of the AdS×S background, there is a

limit on how large it can be - its radius must be less than the radius of the S5 [6]. This

in turn implies a cut off on the angular momentum of the giant. Since angular momentum

of the giant maps into R charge, there should be a cut off on the R charge of the dual

operators. The Schur polynomials corresponding to totally antisymmetric representations

do have a cut off on their R charge; this cut off exactly matches the cut off on the giants

angular momentum [11]. Thus, it is natural to identify Schur polynomials for the completely

antisymmetric representations as the operator dual to sphere giant gravitons. Another class

of Schur polynomials which are naturally singled out, are those corresponding to totally

symmetric representations. Since these representations are not cut off, they are naturally

identified as operators dual to AdS giant gravitons [10], which, because they can expand

in the AdS space, can expand to an arbitrarily large size and hence have no bound on

their angular momentum. The Young diagram has at most N rows, implying a cut off

on the number of AdS giant gravitons; the need for this cut off is clearly visible in the

dual gravitational theory: it ensures that the five form flux at the center of the AdS space

does not become zero; a non-zero flux is needed to support an AdS giant. To obtain

further support for these identifications, one can define a limit in which the dynamics of

this half BPS sector decouples from the rest of the theory [19], leading to a description of

the half-BPS states in terms of the eigenvalues of large N gauged quantum mechanics for a

single Hermitian matrix with quadratic potential. This quantum mechanics is the quantum

mechanics of N free non-relativistic fermions in an external potential [22]. The Schur

polynomials map into energy eigenfunctions of the N fermion system [10, 19]. Recently,

for arbitrary configurations of D-branes which preserve half of the supersymmetries, the

full back reaction of the geometry in the supergravity limit was obtained [23]. The phase

space structure of non-interacting fermions plays a visible role in these solutions, providing

further convincing support for the proposal of [10, 19].

A number of interesting studies exploiting these ideas have appeared recently. For an

attempt to recover gravitational thermodynamics see [24]; for an attempt to understand

spacetime as an emergent phenomenon see [25]. For a tantalizing suggestion of how to

construct the metric of the 1
2 BPS geometries directly in the N = 4 super Yang-Mills

theory, see [26]. The recent work [27] suggests that many of the results that have been

obtained for 1
2 -BPS giants may have an interesting extension to the 1

4 and 1
8 -BPS cases.

For giants in a less supersymmetric background, that may also have a simple field theory

dual see [28].

2.2 Excited giants

As reviewed above, there is significant evidence for the proposal of Corley, Jevicki and
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Ramgoolam that the dual of a giant graviton is a Schur polynomial. The precise rela-

tion between Schur polynomials and giant gravitons however remains obscure. The Schur

polynomial corresponding to a Young diagram with one column, with of order N boxes,

is naturally interpreted as a sphere giant graviton. Presumably, a Schur polynomial corre-

sponding to a Young diagram with O(1) columns, each with O(N) boxes, corresponds to

a bound state of sphere giant gravitons. Similarly, a Schur polynomial corresponding to

a Young diagram with O(1) rows, each containing O(N) boxes, is presumably dual to a

bound state of AdS giant gravitons. The results of [24] support this interpretation. How-

ever, to firmly establish (and define) the precise relation between Schur polynomials and

giant gravitons, more detailed computations are required. It is with this goal in mind, that

we study excited giant gravitons. Excitations of giant gravitons can be described by at-

taching open strings to the giant graviton. The open string ends on the giant graviton and

so it is natural to suspect that the open string knows something about the giant graviton’s

geometry. In this subsection we will describe an attractive proposal for the operators dual

to excited giant gravitons [16].

The proposal of [16] amounts, roughly, to inserting words (W (a))ji describing the open

strings (one word for each open string) into the operator describing the system of giant

gravitons

χ
(k)
R,R1

(Z,W (1), . . . ,W (k)) =
1

(n − k)!

∑

σ∈Sn

Tr R1(ΓR(σ))Tr (σZ⊗n−kW (1) · · ·W (k)), (2.2)

Tr (σZ⊗n−kW (1) · · ·W (k)) = Zi1
iσ(1)

Zi2
iσ(2)

· · ·Zin−k

iσ(n−k)
(W (1))

in−k+1

iσ(n−k+1)
· · · (W (k))iniσ(n)

.

The representation R of the giant graviton system is a Young diagram with n boxes, i.e. it

is a representation of Sn. ΓR(σ) is the matrix representing σ in irreducible representation

R of the symmetric group Sn. The representation R1 is a Young Diagram with n−k boxes,

i.e. it is a representation of Sn−k. Imagine that the k words above are all distinct, corre-

sponding to the case that the open strings are distinguishable. Consider an Sn−k ⊗ (S1)
k

subgroup of Sn. The representation R of Sn will subduce into a (generically) reducible rep-

resentation of the Sn−k ⊗ (S1)
k subgroup. One of the irreducible representations appearing

in this subduced representation is R1. Tr R1 is an instruction to trace only over the indices

belonging to this irreducible component. If the representation R1 appears more than once,

things are a little more subtle. The example discussed in [16] illustrates this point nicely.

Suppose R → R1 ⊕R2 ⊕R2 under restricting Sn to Sn−2 ×S1 ×S1. Choose a basis so that

ΓR(σ) =





ΓR1(σ)i1j1 0 0

0 ΓR2(σ)i2j2 0

0 0 ΓR2(σ)i3j3



 , ∀σ ∈ Sn−2 × S1 × S1.

A generic element of Sn need not belong to the Sn−2 × S1 × S1 subgroup and hence need

not be block diagonal

ΓR(σ) =







A
(1,1)
i1j1

A
(1,2)
i1j2

A
(1,3)
i1j3

A
(2,1)
i2j1

A
(2,2)
i2j2

A
(2,3)
i2j3

A
(3,1)
i3j1

A
(3,2)
i3j2

A
(3,3)
i3j3






, σ /∈ Sn−2 × S1 × S1.
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There are four suitable definitions for Tr R2(ΓR(σ)): Tr (A(2,2)), Tr (A(2,3)), Tr (A(3,2)) or

Tr (A(3,3)). It is natural to interpret the operator obtained using Tr (A(2,3)) or Tr (A(3,2))

as dual to the system with the open strings stretching between the giants and the operator

obtained using Tr (A(2,2)) or Tr (A(3,3)) as dual to the system with one open string on each

giant. In general, it is natural to identify the “on the diagonal” blocks with states in which

the two open strings are on a specific giant and the “off the diagonal” blocks as states in

which the open strings stretch between two giants. As a consequence of the fact that the

representation R2 appears with a multiplicity two, there is no unique way to extract two R2

representations out of R. The specific representations obtained will depend on the details

of the subgroups used in performing the restriction. There is an obvious generalization to

the case that a representation R1 appears n times after restricting to the subgroup. See

the end of the section for an example in which a subgroup appears three times.

This prescription builds operators that are invariant under the Sn−k ⊗ (S1)
k subgroup.

This is natural from the point of view of the quantum field theory: when Wick contracting

we sum over all permutations of the Z fields. From a group theory point of view, this

splitting seems a bit artificial. Indeed, notice that the sum in (2.2) runs over Sn and

not Sn−k. For elements σ ∈ Sn−k, Tr R1(ΓR(σ)) produces the character of the group

element. For elements σ /∈ Sn−k, it seems that Tr R1(ΓR(σ)) has no obvious group theoretic

interpretation. In appendices B and C we give a more natural group theoretic realization

of these traces, by employing projection operators.

If any of the strings are identical, one needs to decompose with respect to a larger

subgroup and to pick a representation for the strings which are indistinguishable. For

example, if two strings are identical, one would consider a Sn−k ⊗ S2 ⊗ (S1)
k−2 subgroup.

The identical strings could be in the or representation. Concretely, this means that

when tracing over the indices associated with the identical open strings, we would restrict

the trace to the or subspaces.

As already discussed, the giant graviton system is dual to an operator containing a

product of order N Higgs fields; the open strings are dual to an operator containing a

product of order
√

N fields. We have in mind the case that k is O(1), n is O(N) and the

words (W (a))ji are a product of O(
√

N) Higgs fields.

There is already convincing evidence for this proposal [16]. The world volume of a

giant graviton is a compact space. The endpoints of open strings ending on the giant

graviton act as point charges in the giant’s world volume theory. Now, the Gauss law on a

compact space implies that the total charge must sum to zero. This is a severe restriction

on the possible excitations of the giant graviton. In particular, it implies that the number of

open strings ending on the giant must equal the number of open strings leaving the giant.

In a beautiful argument, [16] have convincingly demonstrated that (2.2) respects these

constraints, by counting the number of states consistent with the Gauss law constraint and

showing that this matches with the number of possible operators of the form (2.2).

We call the operator (2.2) a restricted Schur polynomial of representation R with

representation R1 for the restriction. If the dimension of R is equal to the dimension of R1,
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we call this a single restricted Schur polynomial. If the dimension of R is not equal to the

dimension of R1, we call this a multiple restricted Schur polynomial. The single restricted

Schur polynomials are particularly simple, because tracing over the representation of the

restricted Schur polynomial is the same as tracing over the representation of the restriction.

For this reason, some of our technology is most easily developed for the single restricted

Schur polynomials, which is why we make this distinction.

We have developed a diagrammatic notation for the restricted Schur polynomials.

The notation summarizes the strings that are attached to the giant graviton system, the

subgroups involved in the restriction and specifies whether we are tracing over an “on the

diagonal block” or over an “off the diagonal block”. As an example, consider

χ 1
2

.

To define this operator, we first restrict from S5 to S4, and then to S3. The S4 subgroup is

defined as the elements of S5 that leave the index of W (1) inert. The S3 subgroup is defined

as the elements of S5 that leave the indices of W (1) and W (2) inert. The representations

involved when we restrict from S5 to S4 and then to S3 are obtained by dropping the

numbered boxes in order

→ → .

In this example, we trace over an “on the diagonal block”. When we trace over an “off

the diagonal block” the operator is denoted with two numbers in the two boxes which are

involved. For example, the operator with label

χ 1
2

2
1

,

is constructed by tracing over the off diagonal block, with row index obtained from the

representation produced with the following restriction

→ → ,

and with column index obtained from the representation produced with the following re-

striction

→ → .

This labelling reflects the fact that the two strings have opposite orientations, as required

by the Gauss law. The operator with label

χ 2
1

1
2

,

is obtained by tracing over the block with the opposite row and column indices. As a last

example, the operator

χ 1
2

2
3

3
1

,
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is obtained by tracing over the block with row label obtained from the representation

produced with the restriction

→ → → ,

and column label obtained from the representation produced with the restriction

→ → → .

An example: We will consider the restricted Schur polynomials

χ
(2)
R,R1

(Z,W (1),W (2)) =
1

3!

∑

σ∈S5

Tr R1(ΓR(σ))Zi1
iσ(1)

Zi2
iσ(2)

Zi3
iσ(3)

(W (2))i4iσ(4)
(W (1))i5iσ(5)

,

where

R = .

After subducing with respect to the S4 subgroup G that leaves the index of W (1) inert

G = {σ ∈ S5|σ(5) = 5},

the representation R decomposes as

⊕ .

Subducing next with respect to the S3 subgroup S that leaves the index of W (2) inert

S = {σ ∈ G|σ(4) = 4},

representation R further decomposes as

⊕ ⊕ .

Labelling the indices of representation R by these S3 and S4 irreducible representations,

in a suitable basis, we have

Γ (σ) =















A11 A12 A13

A21 A22 A23

A31 A32 A33















}

}

}

}

} .

The restricted Schur polynomial obtained by tracing over the A11 block is denoted by

χ 1
2

.
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The restricted Schur polynomial obtained by tracing over the A33 block is denoted by

χ 2
1

.

The restricted Schur polynomial obtained by tracing over the A13 block is denoted by

χ 1
2

2
1

.

The restricted Schur polynomial obtained by tracing over the A31 block is denoted by

χ 2
1

1
2

.

Finally, the restricted Schur polynomial obtained by tracing over the A22 block is denoted

by

χ
2 1

.

Clearly, the labels in the boxes tell you how to construct the restrictions needed to define

the row and column indices of the block which was traced to produce the operator. For

further technical details, which are not needed to understand our results, the reader is

referred to appendices C and D.

2.3 Open strings

As we have already mentioned, the open string is described by a word with O(
√

N) letters.

These letters can in principle be fermions, Higgs fields or covariant derivatives of these

fields. We will consider open strings moving with a large angular momentum on the S5, in

the direction corresponding to Y . The number of Y fields tells us the spacetime angular

momentum of the string state. To describe strings moving with a large angular momentum

on the S5, take words with O(
√

N) Y letters in the word. We can insert different letters

into this word. In this article we will consider only excitations corresponding to insertion

of X Higgs fields. In this second case, the total number of X fields appearing is O(1).

Since we do not allow Z’s to appear in the open string word, we are restricting ourselves to

open strings that have no angular momentum in the direction of the giant. The correlation

functions in this case simplify dramatically, since there can be no contractions between

Higgs fields in the open strings and the Higgs fields making up the giant. In fact, when

computing two point functions in free field theory, as long as the number of boxes in the

representation R is less than O(N2) and the numbers of Z’s in the open string is O(1), the

contractions between any Zs in the open string and the rest of the operator are suppressed

in the large N limit [29].

Our labeling for the open string words is the following (l1 ≤ l2 ≤ l3 · · · ≤ lk)

(Wl1,l2,...lk)ij = (Y l1XY l2−l1XY l3−l1−l2 · · ·Y lk−
Pk−1

b=1 lbX)ij .
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Geometrically we think of the Y ’s as forming a lattice that is populated with X’s. The

numbers lb give the locations of the X’s in this lattice. The BMN loops are given by moving

to momentum space on this lattice.

The most general form that the two point function of open string words can take is

〈(W )ij(W
†)kl 〉 = F0δ

i
lδ

k
j + F1δ

i
jδ

k
l .

In appendix G we explicitly compute the two point function of the open string ground state

of angular momentum J , that is, (W )ij = (Y J)ij . Expanding the exact result, we have

F0 = NJ−1 +
(J − 1)(J − 2)(J2 + 5J + 12)

24
NJ−3 + O(J8NJ−5),

F1 = (J − 1)NJ−2 +
(J − 1)(J − 2)(J − 3)(J2 + 3J + 4)

24
NJ−4 + O(J9NJ−6).

A few comments are in order: In the large N limit the term with coefficient F0 dominates

the term with coefficient F1. We are interested in the case that we have J fields in each

word, with J ∼ O(
√

N) such that g2 ≡ J2

N ≪ 1. With J fields in each word we’d have

F0 = NJ−1(1 + O(g2)) and F1 = (J − 1)NJ−2(1 + O(g2)). Thus, we see that

F1

F0
=

(J − 1)NJ−2

NJ−1
(1 + O(g2)) = O

(√
g2√
N

)

.

The index structure of the F0 term mixes indices of the two words; the index structure of

the F1 term does not mix indices from different words.

2.4 A first look at two point functions

Our strategy is to exploit the fact that since there are no contractions mixing Higgs fields

coming from the open strings (Xs and Y s) and Higgs fields coming from the giant graviton

(Zs), the two point function factorizes as

〈χ(k)
R,R1

χ
(k′)†
R′,R′

1
〉 =

1

(n − k)!(n′ − k′)!

∑

σ∈Sn

∑

σ′∈Sn′

Tr R1(ΓR(σ))Tr R′

1
(ΓR′(σ′))

×〈Tr (σZ⊗n−kW (1) · · ·W (k))Tr (σ′(Z†)⊗n′−k′

(W †)(1) · · · (W †)(k
′))〉

=
1

(n − k)!(n′ − k′)!

∑

σ∈Sn

∑

σ′∈Sn′

Tr R1(ΓR(σ))Tr R′

1
(ΓR′(σ′))

×〈Zi1
iσ(1)

· · ·Zin−k

iσ(n−k)
(Z†)

i′1
i′
σ′(1)

· · · (Z†)
i′
n′

−k′

i′
σ′(n′

−k′)

〉

×〈(W (1))
in−k+1

iσ(n−k+1)
· · · (W (k))iniσ(n)

((W †)(1))
i′
n′

−k′+1

i′
σ′(n′

−k′+1)

· · · ((W †)(k
′))

i′
n′

i′
σ′(n′)

〉,

For simplicity, specialize to attaching a single word to each giant. In this case, using the

results of the previous section, we have (we now set n = n′; for n 6= n′ the correlator
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vanishes)

〈χ(1)
R,R1

(χ
(1)
R′,R′

1
)†〉 =

1

((n − 1)!)2

∑

σ,σ′∈Sn

Tr R1(ΓR(σ))Tr R′

1
(ΓR′(σ′))

×〈Tr (σZ⊗n−1W (1))Tr (σ′(Z†)⊗n−1(W (1))†)〉
=

1

((n − 1)!)2

∑

σ,σ′∈Sn

Tr R1(ΓR(σ))Tr R′

1
(ΓR′(σ′)) (2.3)

〈Zi1
iσ(1)

· · ·Zin−1

iσ(n−1)
(Z†)

i′1
i′
σ′(1)

· · · (Z†)
i′n−1

i′
σ′(n−1)

〉(F0δ
i′n
iσ(n)

δin
i′
σ′(n)

+F1δ
in
iσ(n)

δ
i′n
i′
σ′(n)

),

Split the computation into two terms, one with coefficient F0 and one with coefficient F1.

The term with coefficient F0 can be written as

1

((n − 1)!)2

∑

σ,σ′∈Sn

Tr R1(ΓR(σ))Tr R′

1
(ΓR′(σ′))〈Zi1

iσ(1)
· · ·Zin−1

iσ(n−1)
Zin

iσ(n)
×

×(Z†)
i′1
i′
σ′(1)

· · · (Z†)
i′n−1

i′
σ′(n−1)

(Z†)i
′

n

i′
σ′(n)

〉
∣

∣

∣

n
F0

≡ F0

(

n!

(n − 1)!

)2

〈χR,R1(Z)(χR′,R′

1
(Z))†〉|n,

where the notation
∣

∣

∣

n
is an instruction to only sum over the Wick contractions that contract

Zin
iσ(n)

with (Z†)i
′

n

i′
σ′(n)

. The factor of
(

n!
(n−1)!

)2
is needed because the Schur polynomial

is defined with a coefficient of 1
n! while the restricted Schur polynomial with k strings

attached has coefficient 1
(n−k)! . These restricted correlators will be denoted graphically

with numbered arrows in the boxes corresponding to fields which are to be contracted. For

example,

〈χ →
1

χ†
→
1
〉 =

(

5!

(5 − 1)!

)2

〈χR,R1(Z)(χR,R1(Z))†〉|5,

〈χ →
1→

2

χ†
→
1→

2

〉 =

(

5!

(5 − 2)!

)2

〈χR,R2(Z)(χR,R2(Z))†〉|5,4,

where

R = R1 = , R2 = .

The term with coefficient F1 can be manipulated to give

F1
1

((n − 1)!)2

∑

σ,σ′∈Sn

Tr R1(ΓR(σ))Tr R′

1
(ΓR′(σ′))×

〈Zi1
iσ(1)

· · ·Zin−1

iσ(n−1)
(Z†)

i′1
i′
σ′(1)

· · · (Z†)
i′n−1

i′
σ′(n−1)

〉δin
iσ(n)

δ
i′n
i′
σ′(n)

= F1〈DW (1)χ
(1)
R,R1

(DW (1)χ
(1)
R′,R′

1
)†〉,
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where

DW (1) ≡ d

d(W (1))ii
,

is the reduction operator introduced in [21]. One of the results of this article is to develop

efficient methods to compute the reduction of restricted Schur polynomials. Using our

graphical notation, an explicit example of (2.3) is

〈χ 1 χ†
1 〉 = F0〈χ →

1
χ†

→
1
〉 + F1〈DW (1)χ 1 (DW (1)χ 1 )†〉.

For multi string excitations of giants we will consider mainly pair wise contractions of

strings

〈(W (1))
in−k+1

iσ(n−k+1)
· · · (W (k))iniσ(n)

(W †(1))
i′
n′

−k′+1

i′
σ′(n′

−k′+1)

· · · (W †(k′))
i′
n′

i′
σ′(n′)

〉 =

〈(W (1))
in−k+1

iσ(n−k+1)
(W †(1))

i′
n′

−k′+1

i′
σ′(n′

−k′+1)

〉 · · · 〈(W (k))iniσ(n)
(W †(k′))

i′
n′

i′
σ′(n′)

〉 + all possible pairings.

The terms which have been dropped correspond to contractions which mix four (or more)

words and hence correspond to open string interactions. We therefore expect these terms

to be sub leading in N . We will assume that

〈(W (k))ij(W
†(l))i

′

j′〉 ∝ δkl,

so that only a single pairing contributes.

We will end this section by considering a concrete example for the case k = k′ = 2 in

detail. The extension to higher k is straight forward. The example is

〈χ 1
2

χ†
1

2

〉 = F 1
0 〈χ →

1
2

χ†
→
1

2

〉 + F 1
1 〈DW (1)χ 1

2

(DW (1)χ 1
2

)†〉

= F 1
0 F 2

0 〈χ →
1→

2

χ†
→
1→

2

〉 + F 1
0 F 2

1 〈DW (2)χ →
1

2

(DW (2)χ →
1

2

)†〉

+F 1
1 F 2

0 〈DW (1)χ 1
→
2

(DW (1)χ 1
→
2

)†〉

+F 1
1 F 2

1 〈DW (2)DW (1)χ 1
2

(DW (2)DW (1)χ 1
2

)†〉

The coefficient F i
0 is the F0 contraction of the ith word; the coefficient F i

1 is the F1 con-

traction of the ith word.

The operators used in our examples would of course, not represent physically realistic

operators for the description of excited giant gravitons. To be physically realistic, we would

need to consider representations with O(N) blocks and O(1) strings attached to the giant.

In this subsection, we have managed to reduce the computation of the two point

function, to the computation of the two point function of restricted Schur polynomials

where only a subset of contractions are summed and to the computation of reductions of

the restricted Schur polynomial. Our reorganization of the computation is useful because

we have been able to find efficient methods to compute these quantities. Our methods are

summarized in the next subsection.
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2.5 Summary of results

In this section we will state a set of rules that allows a simple computation of reductions

of restricted Schur polynomials as well as the computation of the two point function of

restricted Schur polynomials where a subset of contractions are summed. These rules are

proved in the appendices.

Rule 1: The reduction of a restricted Schur polynomial is simplest if one reduces

with respect to the open string with the smallest label. The reduction is simply given by

dropping the box associated with the open string and multiplying by the weight of the

removed box. As an example we have

DW (2)DW (1)χ 1
2

= (N + 2)DW (2)χ
2

= N(N + 2)χ .

Recall that the specific subgroups used in the restriction play an important role in deter-

mining the operator. This is why the reduction with respect to the smallest string label

is simplest. If we wanted to first compute the reduction with respect to W (2), we need to

use a subgroup swap rule, which will tell us how polynomials constructed using different

restrictions are related. The reduction with respect to a word with indices belonging to an

“off the diagonal block” vanishes

DW (1)χ 1
2

2
1

= 0.

It is incorrect to conclude that

DW (2)χ 1
2

2
1

= 0.

After employing the subgroup swap rule, this reduction is non-zero.

Rule 2: The subgroup swap rule can be used if we need to reduce with respect

to an open string which does not have the smallest label. Let us first discuss the case

that only two strings or less are attached to the giant. In this case, to compute a two

point function, one reduces the result of the subgroup swap implying that stretched string

state contributions can be dropped. The restricted Schur polynomials defined above were

reduced with respect to the subgroup that leaves the index of W (1) inert, and then further

with respect to the subgroup that leaves the index of W (2) inert. For the sake of discussing

rule 2, we will denote this as

χ 1
2

|1|2.

The restricted Schur polynomials defined by reducing with respect to the subgroup that

leaves the index of W (2) inert, and then with respect to the subgroup that leaves the index

of W (1) inert will be denoted by

χ 1
2

|2|1.
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Consider the restricted Schur polynomial χ
(2)
R,R1

. Let ci denote the weight associated with

the box occupied by W (i). The subgroup swap rule says that, up to stretched string state

contributions,

χ
(2)
R,R1

|2|1 = (1 − a)χ
(2)
R,R1

|1|2 + aχ
(2)
R,R1

|1|2(1 ↔ 2)

with χ
(2)
R,R1

|1|2(1 ↔ 2) the restricted Schur polynomial obtained by swapping the labels 1

and 2, and

a =
1

(c1 − c2)2
.

Using the subgroup swap rule, we easily find

DW (2)χ 1
2

=
3N

4
χ 1 +

N + 2

4
χ

1
.

The subgroup swap rule can be used to swap any two strings n and n + 1 for any n. To

swap n and n+2 say, we would first swap n and n+1, and then n and n+2. See appendix

C for explicit examples.

If more than two strings are attached to the giant, extra contributions coming from

twisted string states need to be included. To state the subgroup swap rule in its full

generality, we will modify our notation slightly. Stretched strings are denoted by placing a

pair of indices in the box of the stretched string. Up to now, if a string was attached to a

single brane, a single number would appear in the box; we will repeat that number so that

every box has both an upper and a lower label. Thus, for example,

χ 1
2

→ χ 1
1

2
2

.

Denote the weight of the box that has the upper label equal to the index that is fixed first,

before the swap, by cU
1 . Denote the weight of the box that has the lower label equal to

the index that is fixed first, before the swap, by cL
1 . Denote the weight of the box that has

the upper index equal to the index that is fixed next, before the swap, by cU
2 . Denote the

weight of the box that has the lower index equal to the index that is fixed next, before the

swap, by cL
2 . The upper and lower swap factors are given by

SU =
cU
1 − cU

2

(cU
1 − cU

2 )2
, SL =

cL
1 − cL

2

(cL
1 − cL

2 )2
.

The upper and lower no-swap factors are given by

NU =

√

1 − 1

(cU
1 − cU

2 )2
, NL =

√

1 − 1

(cL
1 − cL

2 )2
.

In full generality, the subgroup swap rule says that when two subgroups are swapped, all

possible swaps of the upper indices of the two boxes and the lower indices of the two boxes
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are allowed. For each swap of indices (upper or lower) we include a factor SU or SL; if the

indices are not swapped, we include a factor NU or NL. Thus, for example,

χ 1
2
3

3
2

|1|3|2=NUNLχ 1
2
3

3
2

|3|1|2+NUSLχ 1
3

2
1

3
2

|3|1|2+SUNLχ 3
1

2
3

1
2

|3|1|2+SUSLχ 3
2
1

1
2

|3|1|2

=
3
√

5

8
χ 1

2
3

3
2

|3|1|2 +

√
15

8
χ 1

3
2
1

3
2

|3|1|2 +

√
3

8
χ 3

1
2
3

1
2

|3|1|2 +
1

8
χ 3

2
1

1
2

|3|1|2.

We can only swap “adjacent indices” - in the above example, for the operator on the left

hand side we could swap 1 ↔ 3 or 2 ↔ 3, but not 1 ↔ 2;2 for the operators on the right

hand side we could swap 1 ↔ 3 or 2 ↔ 1, but not 3 ↔ 2. These pairs of labels in each

box are naturally identified as Chan-Paton factors of the open strings. The subgroup swap

rule shows that the specific labelling of the states can be changed by choosing a different

chain of subgroups for the restriction. Perhaps this freedom in labelling is responsible for

the expected emergent gauge symmetry. This general rule is derived in appendix D.2.

Rule 3: The restricted correlator rule states that

〈χR,R′(Z)(χS,S′(Z))†〉
∣

∣

∣

n,n−1,...,n−k
=

(n − k − 1)!dR′fR

n!dR
δR→R′,S→S′.

for a trace running over an “on the diagonal block” and

〈χR,R′T ′(Z)(χS,U ′S′(Z))†〉
∣

∣

∣

n,n−1,...,n−k
=

(n − k − 1)!dR′fR

n!dR
δR→(R′T ′),S→(U ′S′)δT ′U ′δR′S′ .

for a trace running over an “off the diagonal block”. The indices of the “off the diagonal

block” are explicitely displayed in this last formula. The delta function δR→R′,S→S′ indi-

cates that the all representations appearing in intermediate steps of restricting R to R′

must match all representations appearing in intermediate steps of restricting S to S′. Sim-

ilarly, the delta function δR→(R′T ′),S→(U ′S′) indicates that the all representations appearing

in intermediate steps of restricting R to (R′T ′) must match all representations appearing

in intermediate steps of restricting S to (U ′S′). An example of an application of this rule,

using our graphical notation, is

〈χ →
1→

2

χ†
→
1→

2

〉 =
n!

(n − k)!

dR

dR′

fRδR→R′,S→S′

=
5!

3!

2

5
N2(N − 1)(N + 1)(N + 2).

We call this operation “gluing”. For the example just discussed, we say that both boxes 1

and 2 were glued.

2i.e. using a single application of the the subgroup swap rule we can relate χR|1|3|2 to χR|3|1|2 or χR|1|2|3
but not to χR|2|3|1.

– 18 –



J
H
E
P
0
6
(
2
0
0
7
)
0
7
4

The restricted correlator rule determines the leading order contribution to the two point

function, if we are in the correct regime to interpret this operator as a string attached to

a giant graviton. It is thus clear that, in this regime, the operators introduced in [16] are

orthogonal at large N .

Computing correlators using the rules: imagine we have an operator with n strings

attached. Starting from box 1, sum the term obtained by gluing and the term obtained

by reducing. Then for each of these two terms generate two new terms by gluing box 2

or reducing it. Continue in this way till box n itself is glued or reduced. This process

generates a total of 2n terms. Evaluate each term using rules 1 to 3.

Using these rules, we can now complete the computation of the two point function we

considered in the previous section

〈χ 1
2

χ†
1

2

〉 = F 1
0 F 2

0 〈χ →
1→

2

χ†
→
1→

2

〉 + F 1
0 F 2

1 〈DW (2)χ →
1

2

(DW (2)χ →
1

2

)†〉

+F 1
1 F 2

0 〈DW (1)χ 1
→
2

(DW (1)χ 1
→
2

)†〉

+F 1
1 F 2

1 〈DW (2)DW (1)χ 1
2

(DW (2)DW (1)χ 1
2

)†〉

= 8N2(N2 − 1)(N + 2)F 1
0 F 2

0 + 4N2(N2 − 1)(N + 2)2F 1
1 F 2

0

+

(

7

4
N6 + 4N5 − 3

4
N4 − 4N3 − N2

)

F 1
0 F 2

1

+N3(N + 2)2(N2 − 1)F 1
1 F 2

1 .

2.6 Two point function of a giant with 3 strings attached

We end this section with a final example, which illustrates the subgroup swap rule in its

full complexity. Consider computing the correlator

〈χ 1
2

3

χ†
1

2
3

〉.

We will only discuss how to evaluate the coefficient of the term F 1
0 F 2

0 F 3
1 , which is

C1 = 〈DW (3)χ →
1→

2
3

(DW (3)χ →
1→

2
3

)†〉.

To evaluate this reduction, we first need to swap 3 ↔ 2 and then 3 ↔ 1 in each operator.

Under the 3 ↔ 2 swap we have

C2 =DW (3)χ 1
2

3

→ 3

4
DW (3)χ 1

2
3

+
1

4
DW (3)χ 1

3
2

+

√
3

4
DW (3)χ 1

2
3

3
2

+

√
3

4
DW (3)χ 1

3
2

2
3

.
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Finally, after the 3 ↔ 1 swap we have

C2 → 45

64
DW (3)χ 1

2
3

+
3

16
DW (3)χ 1

3
2

+
3

64
DW (3)χ 3

2
1

+
1

16
DW (3)χ 3

1
2

+

√
3

32
DW (3)χ 3

2
1

1
2

+

√
3

32
DW (3)χ 3

1
2

2
1

.

After these swaps, we can reduce to obtain

C2 =
45(N − 2)

64
χ 1

2

+
3N

16
χ 1

2

+
3(N + 2)

64
χ

2
1

+
N + 2

16
χ

1
2

+
(N + 2)

√
3

32
χ

2
1

1
2

+
(N + 2)

√
3

32
χ

1
2

2
1

.

After the gluing

C1=

(

45(N−2)

64

)2

〈χ†
→
1→

2

χ →
1→

2

〉+
(

3N

16

)2

〈χ†
→
1

→
2

χ →
1

→
2

〉+
(

3(N + 2)

64

)2

〈χ†

→
2→

1

χ
→
2→

1

〉

+

(

N+2

16

)2

〈χ†

→
1→

2

χ
→
1→

2

〉+
(

(N+2)
√

3

32

)2

〈χ†

→
2
1→

1
2

χ
→
2
1→

1
2

〉+
(

(N+2)
√

3

32

)2

〉χ†

→
1
2→

2
1

χ
→
1
2→

2
1

〉,

which is easily evaluated to give

C1 =
1097

256
N7 − 247

32
N6 − 5485

256
N5 +

1235

32
N4 +

1097

64
N3 − 247

8
N2.

3. Applications

The operators we are studying in this article, are conjectured to be dual to giant gravitons

with open strings attached. Since the giant gravitons have finite volume, these operators

need to satisfy non-trivial constraints implied by the Gauss law. They do indeed satisfy

these constraints [16], providing convincing evidence for the proposed duality. The low

energy dynamics of the open strings attached to the giant gravitons will give rise to a

Yang-Mills theory. This new emergent 3+1 dimensional Yang-Mills theory is not described

as a local field theory on the S3 on which the original Yang-Mills theory is defined - it is

local on the world volume of the giant gravitons [16].3 This world volume emerges from the

3See also [30] for an extremely interesting, related set of ideas. Motivated by results from black hole

dynamics, this article is the first to suggest that in the presence of very heavy D-brane states the low energy

dynamics of a Yang-Mills theory may enjoy a duality with an emergent gauge theory.
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matrix degrees of freedom participating in the Yang-Mills theory. Understanding how to

reconstruct this emergent gauge theory may be simpler and provide important clues into

the problem of reconstructing the full AdS5×S5 quantum gravity. Using the technology

developed in the previous section, we can explore a number of interesting physical questions

which allow us to explore these issues.

In particular, by studying the amplitudes for closed string emission from an excited

giant graviton we find convincing evidence that physics in the emergent spacetime is lo-

cal. We also find indications that the emergent world volume theory of a bound state of

giant gravitons is a non-Abelian theory with the expected gauge group and we provide

some evidence that the quark-antiquark potential in the emergent gauge theory comes out

correctly.

For a general framework which obtains the connection between CFT correlation func-

tions and probability amplitudes in the dual quantum gravity see [31]. In the language

of [31] we compute amplitudes using the overlap normalization.

Since we are working in the free Yang-Mills theory, we are strictly speaking, probing

the limit of tensionless strings.

3.1 Gravitational radiation

In this subsection we will study the amplitudes for closed string emission from an excited

D-brane and from bound states of D-branes. This allows us to test locality in the bulk

spacetime as well as to provide some evidence that the emergent gauge theory has the

correct (non-Abelian) gauge group.

3.1.1 Closed string radiation from sphere giants

Sphere giant gravitons (and bound states of them) are conjectured to be dual to operators

that correspond to representations with O(N) rows and O(1) columns. The operator dual

to a sphere giant of momentum p, with an open string attached is (we use the notation

(1p) for the antisymmetric representation with p boxes)

χ
(1)
(1p+1),(1p)

(Z,W ),

where the open string word is given by

(W )ij = (Y J)ij

We take p to be O(N). The operator dual to the (unexcited) D-brane together with the

emitted closed string is

Tr (Y J)χ(1p)(Z).

Thus, the normalized interaction amplitude is given by

A(1p+1),(1p) =
〈Tr (Y †J )χ†

(1p)χ
(1)
(1p+1),(1p)

〉
√

〈Tr (Y †J)χ†
(1p)Tr (Y J)χ(1p)〉〈(χ(1)

(1p+1),(1p)
)†χ(1)

(1p+1),(1p)
〉
.
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It is straight forward to obtain

〈(χ(1)
(1p+1),(1p)

)†χ(1)
(1p+1),(1p)

〉 = NJ−1p

p+1
∏

i=1

(N − i + 1)

(

1 + O

(

J4

N2

))

.

In estimating the size of the correction, we have assumed that N−p is O(N); this correction

is of the same size if N − p is O(1). Further,

〈Tr (Y †J )χ†
(1p)Tr (Y J)χ(1p)〉 = JNJ

p
∏

i=1

(N − i + 1)

(

1 + O

(

J4

N2

))

,

〈Tr (Y †J)χ†
(1p)χ

(1)
(1p+1),(1p)

〉 = JNJ−1
p+1
∏

i=1

(N − i + 1)

(

1 + O

(

J4

N2

))

.

In all expressions we quote, the corrections are due to the fact that although we treat the

contractions of the Z’s exactly, when contracting the open string words (i.e. the Y fields),

only the planar graphs are summed. Putting these results together, it is now straight

forward to obtain

A(1p+1),(1p) =

√

J(N − p)

pN

(

1 + O

(

J4

N2

))

. (3.1)

This is in agreement with the result obtained in [16]. To interpret this amplitude, we

will review the D-brane instability discovered in [13]. Our sphere giant is moving in a

non-zero Ramond-Ramond background flux. The giant, which will feel a Lorentz force,

is accelerated with respect to geodesic free fall. The string which does not couple to the

Ramond-Ramond background and hence if free would undergo geodesic free fall, is pulled

by the giant along the accelerated path. Thus, a non-zero force is exerted on the end points

of the string. This force will do two things; it will tend to stretch the string and it will

tend to bring the end points of the string closer together. By bringing the end points of

the open string closer together, the force will drive the gravitational radiation. What is

the magnitude of this force exerted on the end points of the string? We can estimate this

force using classical reasoning. Each element of the giant is moving along a circular path

of radius

r = R

√

N − p

N
,

(where R is the radius of the S5) and with an angular velocity φ̇ = ω = 1
R . The mass of

the string is set by J , M = J
R . To drag a mass M along a circular path of radius r, in flat

space, we need to exert a force ~F = −F r̂ on it, with

F = Mω2r =
J

R2

√

N − p

N
.

Notice that when N − p is O(N), F ∼ J
R2 ; when N − p is O(1), the force is supressed by a

factor of
√

N F ∼ 1√
N

J
R2 . This is exactly how the amplitude A(1p+1),(1p) behaves: if N − p

is O(N) A(1p+1),(1p) ∼
√

J
p ; when N − p is O(1), the force is supressed by a factor of

√
N ,

A(1p+1),(1p) ∼ 1√
N

√

J
p .
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Figure 1: The representations used to compute the amplitude for gravitational radiation from a

bound state of n sphere giants. R has p rows and n columns where p is O(N) and n is O(1). R′ is

obtained by removing a single box.

We can easily generalize the above result in two ways. First, to consider a boundstate

of sphere giant gravitons, the relevant amplitude is given by

AR,R′ =
〈Tr (Y †J )χ†

R′χ
(1)
R,R′〉

√

〈Tr (Y †J)χ†
R′Tr (Y J)χR′〉〈(χ(1)

R,R′)†χ
(1)
R,R′〉

.

where R and R′ are defined in figure 1. The computation proceeds exactly as for the single

sphere giant; we will not show all of the details. The amplitude for gravitational radiation

from a boundstate of n sphere giants, each of angular momentum p is

AR,R′ =
1√
n

√

J(N − p)

pN
.

For a possible interpretation of this amplitude, note that there is good evidence (see for

example [24]) that the giant gravitons behave as bosons. In this case, perhaps we should

extract a factor of
√

n from the amplitude; this factor is the usual enhancement expected

as a consequence of the fact that we deal with n bosons. Concretely, the interaction (the

string plays no role in this argument and hence is supressed)

Hint = ga†p−1ap

that allows a state with n identical giants of momentum p to decay into a state with

n − 1 giants of momentum p and one giant of momentum p − 1, gives a matrix element

proportional to
√

ng

〈0|(ap)
n−1ap−1

√

(n − 1)!
Hint

(a†p)n√
n!

|0〉 =
√

ng,

and not g as one might naively have expected. This enhancement can be understood as a

consequence of the fact that the second quantized boson creation operators automatically
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produces a correctly symmetrized state. Our excited giant operator is symmetric under

swapping boxes in the same row and hence it too builds a correctly symmetrized state.

The remaining piece of the amplitude is O
(

1
n

)

. It is naturally interpreted as a non-planar

correction in the expected emergent U(n) gauge theory, which should arise as the low

energy world volume description of n co-incident D-branes. Of course, the U(n) theory

does not implement this symmetrization (it is a “first quantized description” with fixed n)

which is why the
√

n factor must be included before comparing.

The amplitudes we have considered here, correspond to the situation where the end-

points of the open string join and the whole open string is emitted as a single closed string.

A second generalization of the above amplitude that we can consider, is to allow a piece

of the open string to pinch off, leaving a smaller open string attached to the giant. The

relevant amplitude is

A(1p+1),(1p)(J1, J2) =
〈Tr (Y †J1)(χ

(1)
(1p+1),(1p)

(Z,W (2)))†χ(1)
(1p+1),(1p)

(Z,W (1))〉
√N1N2

,

where

N1 = 〈Tr (Y †J1)(χ
(1)
(1p+1),(1p)

(Z,W (2)))†Tr (Y J1)χ
(1)
(1p+1),(1p)

(Z,W (2))〉,

N2 = 〈(χ(1)
(1p+1),(1p)

(Z,W (1)))†χ(1)
(1p+1),(1p)

(Z,W (1))〉,

and the open strings W (1) and W (2) are

(W (1))ij = (Y J1+J2)ij (W (2))ij = (Y J2)ij .

A straight forward computation gives

A(1p+1),(1p)(J1, J2) =

√
J1(J2 + 1)

N

(

1 + O

(

J4

N2

))

.

This amplitude is maximized when J2 is a maximum. Evidently it is easier for small bits of

the string to break off. At this maximum value, J1 = O(1), J2 = O(J) with J = J1+J2 and

the amplitude is of order O
(

J
N

)

. When N − p is O(N), the amplitude (3.1) is O

(

√

J
N

)

.

Since J
N ≪ 1, the dominant decay process is the one in which the complete open string is

emitted as a single closed string. When N − p is O(1), the amplitude (3.1) is O
(√

J
N

)

. In

this case, the dominant decay process is the one in which small pieces of the open string

pinch off.

3.1.2 Closed string radiation from AdS giants

The computations for AdS giants are a straight forward generalization of the computations

of the previous subsection. For this reason, we do not provide all of the details. AdS giant

gravitons (and bound states of them) are conjectured to be dual to operators that corre-

spond to representations with O(N) columns and O(1) rows. The normalized interaction
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amplitude for the emission of a closed string by an excited AdS giant is given by (we use

the notation (p) for the symmetric representation with p boxes)

A(p+1),(p) =
〈Tr (Y †J)χ†

(p)χ
(1)
(p+1),(p)〉

√

〈Tr (Y †J)χ†
(p)Tr (Y J)χ(p)〉〈(χ(1)

(p+1),(p))
†χ(1)

(p+1),(p)〉
.

It is now a simple matter to compute

A(p+1),(p) =

√

J(N + p)

pN

(

1 + O

(

J4

N2

))

.

For small p we find that this agrees with the amplitude computed for the sphere giant. This

is exactly as expected: for small values of p we essentially have a point like graviton and

the AdS and sphere giants are identical. However, as p is increased the above amplitude

decreases more slowly than the amplitude for the sphere giant. This is what we should

expect. As p increases it couples more strongly to the Ramond-Ramond field and the giant

blows up, pushing further from the origin of AdS space. The open string attached to the

giant will thus feel a greater force.4 This slower fall off of the AdS amplitude is again a

manifestation of the D-brane instability discovered in [13].

We can again generalize this result to a boundstate of n giants

A =
1√
n

√

J(N + p)

pN

(

1 + O

(

J4

N2

))

.

Again, after factoring out the bosonic enhancement factor5 of
√

n, we obtain an amplitude

of O
(

1
n

)

which is of the correct size to be identified with the first non-planar corrections of

a non-Abelian gauge theory with gauge group U(n). This is consistent with the expected

emergent U(n) gauge theory, which should arise as the low energy world volume description

of n co-incident AdS giant gravitons.

3.1.3 Probing locality using closed string radiation

Consider the representations R, S and T shown in figure 2. We are interested in the

case that b1 and b2 are both O(N) and a1 and a2 are both O(1). The Schur polynomial

χR(Z) should be dual to a bound state of a1 giant gravitons of angular momentum b1 + b2

and a2 giant gravitons of angular momentum b1. The radius of the giant graviton Rgg is

determined by its angular momentum p, in terms of the radius R of the S5 in the AdS5×S5

background as

Rgg = R

√

p

N
.

The sphere giants wrap an S3 within the S5. Decompose the S5 as S3×D2 where S3 is the

sphere that the giant graviton wraps and D2 is a disk. The giant traces out a circular orbit

4Recall that the geodesic of a particle moving in AdS space is driven towards the origin.
5The AdS giants do not behave as bosons. In particular, we have an upper limit of N on the number of

AdS giants that we can create. However, since n ≪ N , treating the AdS giants as bosons is an excellent

approximation.
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on the disk, of radius
√

R2 − R2
gg. Thus, the a1 sphere giants are separated from the a2

sphere giants by a radial distance of more than6

R

[
√

N − b1

N
−

√

N − (b1 + b2)

N

]

= O(R).

Thus, for large R (we work in units of the string length) we have two well separated bound

states of sphere giants. The large R limit corresponds to the large ’t Hooft coupling limit of

the super Yang-Mills theory. Here we work in the opposite limit of zero ’t Hooft coupling.

However, since we are working with operators that are nearly BPS, it is not unreasonable

to hope that our results can safely be extrapolated to the strong coupling limit. For this

reason, even though we work in the free field theory limit, we will still look for signals

that the operator χR(Z) is dual to two well separated bound states of sphere giants. We

interpret any such evidence as signals of locality in the bulk spacetime that emerges from

the matrix degrees of freedom of the original Yang-Mills theory.

To start, we will compute the amplitude

AR,T =
〈Tr (Y †J)χ†

T χ
(1)
R,T 〉

√

〈Tr (Y †J)χ†
T Tr (Y J)χT 〉〈(χ(1)

R,T )†χ(1)
R,T 〉

.

The natural interpretation of χ
(1)
R,T is as a bound state of a1 sphere giants of angular

momentum b1 + b2 and an excited boundstate of a2 sphere giants of angular momentum

b1. The above amplitude is easily evaluated to give

AR,T =
1√
a2

√

J(N − b1)

Nb1

(

1 + O

(

J4

N2

))

.

This is exactly what would have been obtained if the a1 sphere giant bound state was not

present. Thus, the a1 sphere giants of momentum b1 +b2 do not interact with the a2 sphere

giants of momentum b1, which is exactly the behavior we expect from two well separated

bound states.

We can also consider the amplitude

AR,S =
〈Tr (Y †J)χ†

Sχ
(1)
R,S〉

√

〈Tr (Y †J)χ†
STr (Y J)χS〉〈(χ(1)

R,S)†χ(1)
R,S〉

.

In this case, it is the bound state of a1 sphere giants of angular momentum b1 + b2 that is

excited. Evaluating the above amplitude we obtain

AR,S =
1√
a1

√

J(N − b1 − b2)

(b1 + b2)N

(

1 + O

(

J4

N2

))

.

6This is the distance which separates them on the D2; the fact that their worldvolumes are S3s with

different radii also contributes to the separation.
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Figure 2: The representations used to test locality of sphere giants.

Again, this is what would have been obtained if the a2 sphere giant bound state was not

present, which is again the behavior we expect from two well separated bound states.

Using the sphere giants, we have been able to probe the question of locality in the S5 of

the AdS5×S5 background. We will now explore locality in the AdS5 part of the background

using the AdS giants. As in the case of the sphere giants, the radius of the giant graviton

Rgg is determined by its angular momentum p, in terms of the radius R of the AdS5 in the

AdS5×S5 background as

Rgg = R

√

p

N
.

Thus, the b1 AdS giants are separated from the b2 AdS giants by a radial distance

R

√

a1 + a2

N
− R

√

a1

N
= O(R).

The representations we will use are shown in figure 3. We assume that a1 and a2 are O(N)

and b1 and b2 are O(1). Evaluating the relevant amplitudes, we obtain

AR,T =
1√
b2

√

J(N + a1)

Na1

(

1 + O

(

J4

N2

))

,

AR,S =
1√
b1

√

J(N + a1 + a2)

(a1 + a2)N

(

1 + O

(

J4

N2

))

.

These amplitudes are manifestly consistent with locality in the AdS space.
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Figure 3: The representations used to test locality of AdS giants.

3.1.4 Closed versus open strings

There are two types of string excitations that can be created: we can attach an open

string to the membrane bound state, or we can excite a closed string. In the dual fermion

language, the AdS space corresponds to a droplet. Single KK graviton excitations of this

droplet corresponds to ripples on the edge of the drop. Sphere giants correspond to holes

deep in the droplet, while AdS giants correspond to fermions excited well above the Fermi

level. Using this dual fermion interpretation, in the Young diagram language, Berentsein

has given a beautiful translation [19] of the shape of the Young diagram into membrane

plus string excitations. This interpretation is summarized in figure 4. In this section we

will explore and provide further evidence for this interpretation.

Consider the amplitude to make a transition from the operator corresponding to the

initial state i1 to the operator described by the final state f1 (see figure 5)

A =

√

J(N − p)

Np

(

1 + O

(

J4

N2

))

.

This amplitude only recieves a contribution from the F1 term. This is identical to the

amplitude for the initial excited sphere giant state to decay into an unexcited sphere giant

plus a closed string. Thus, the final state is behaving as if it is a closed string plus sphere

membrane state. This is in perfect agreement with Berenstein’s picture. We can also

consider the amplitude to make a transition from the operator corresponding to the initial

state i2 to the operator described by the final state f2

A =

√

J(N + p)

Np

(

1 + O

(

J4

N2

))

.
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Figure 4: Translation of a Young diagram into membrane plus string excitations. The string

excitations correspond to the darkened boxes.

Figure 5: The representations used to test the interpretation of the F0 and F1 contributions to

the two point functions. The darkened boxes represent the position of the string. There are p white

boxes in each diagram shown.

Again, this amplitude only recieves a contribution from the F1 term. This is identical to

the amplitude for the initial excited AdS giant state to decay into an unexcited AdS giant

plus a closed string. Thus, the final state is behaving as if it is a closed string plus AdS

membrane state. Again this is in perfect agreement with Berenstein’s picture.

3.1.5 Spacetime foam

In the subsection 3.1.3 we have managed to find some circumstantial evidence for locality in
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the bulk spacetime that emerges from the matrix degrees of freedom of the original Yang-

Mills theory. It is interesting (and comforting) to see this locality emerge in a situation

where it is expected. It is equally interesting to ask how locality breaks down, a question

that should provide some insight into what happens at the Planck scale in a theory of

quantum gravity. In the regime in which locality does break down, we expect that quantum

gravity corrections become important. As a first step towards probing these issues, in this

section we will study the correlation functions of operators which are described in the dual

quantum gravity by a “spacetime foam”. The low energy effective description of a foam [24]

with given global charges is in terms of the superstar geometry [32], which is singular. For

very interesting and insightful related work see [33].

We have already mentioned that as the number of boxes in the Young diagram changes,

the interpretation of the operator in the dual gravitational theory changes: for ∼ 1 boxes

the operator is dual to a supergravity state, for ∼
√

N boxes the operator is dual to a

string state and for ∼ N boxes the operator is dual to a giant graviton. In this section we

consider operators with ∼ N2 boxes. In this case, the operator is dual to a new geometry.

The two point function of an excited giant with a single string attached receives two

contributions, depending on how the associated open string words contract. We have

denoted these two open string contributions as F0 and F1. In the preceding subsections,

the term proportional to F0 has been the dominant contribution to the normalization

factor of the amplitudes we computed. Given the way the indices of the string contract,

it is natural to interpret this term as an open string overlap. F0 enters when we compute

the normalization of an operator. By the same logic, the term proportional to F1 is

naturally interpreted as a closed string interaction. F1 naturally enters when we compute

the transition amplitude between two states: the open string “peels” off the boundstate

to form a closed string and then “reattaches” as an open string in a new position. In this

section, we will ask if there are operators χ
(1)
R,R′ , such that the contributions from the F1

and F0 terms to the two point function are of the same order of magnitude. Presumably,

the geometries dual to these operators have Planck scale features implying high curvatures,

so that the corrections to the leading result are important.

Consider attaching a single string to our boundstate of giants. Using the rules from

section 2.5, we know that the two point function takes the form

〈(χ(1)
R,R′)

†χ(1)
R,R′〉 = nF0fR

dR′

dR
+ F1c

2
R,R′fR′ ,

where n is the number of boxes in the Young diagram, cR,R′ is the weight of the box

that must be removed from R to obtain R′ and dR, dR′ are the dimensions of the R,R′

representations of the symmetric groups Sn, Sn−1. Now, we know that fR = cR,R′fR′ .

Thus, we are looking for representations R such that

nF0
dR′

dR
∼ F1cR,R′ .

In the limit that we consider (J2N ≪ 1) F0 dominates F1. Thus, we need to find repre-

sentations R for which
dR′

dR
≪ 1.
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Figure 6: The representation R shown has the maximum number of “corners” possible. As a

result, it subduces a large number of representations when a single box is removed. R′ is obtained

by removing the filled box. The filled box is in row a and column b. We consider the case that A

and B are both O(N).

This will be the case if representation R can subduce many different representations R′.
The set of all possible representations that can be subduced from a given Young diagram

R is given by the set of all Young diagrams that can be obtained by removing a single box

from R. Since we can remove any box that is a corner, this naturally suggests that we

should consider representations R which correspond to Young diagrams that have a very

large number of corners. An example of such a Young diagram is given in figure 6. The

quantities appearing in our two point function are

n
dR′

dR
=

(A − a + b)!!

(A − a + b − 1)!!

(B + a − b)!!

(B + a − b − 1)!!

=
[(A − a + b)!!]2

(A − a + b)!

[(B + a − b)!!]2

(B + a − b)!
,

cR,R′ = N − a + b.

We will consider the case that b = O(N), a = O(1) so that A − a + b = O(N) and

B + a − b = O(1). Using Stirling’s approximation to evaluate the above factorials we find

n
dR′

dR
=

e2
√

2√
π

√
A − a + b.

Clearly, cR,R′ is O(N). Taking the open string word

(W )ij = (Y J)ij

with J2N fixed, we easily find

nF0
dR′

dR
∼

√
A − a + bNJ−1, F1cR,R′ ∼ (J − 1)NJ−1.
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Thus, the corrections to the leading term are the same size as the leading term. It is

interesting to note that triangular Young diagrams were studied in [24, 33] where they

were argued to be relevant for a description of the geometry of the superstar [32] and

further were used to show that they are described by an effective geometry that is singular.

This singular geometry was interpreted as an effective description of microstates that differ

from each other by Planck scale structures. See [34] for a connection to R charged black

holes in AdS5×S5.

Based on the results of this section, it is clear that the number of corners in the Young

diagram provides important information about the dual effective geometry. The importance

of the corners in Young tableaux is clear from the LLM solution: the number of corners is

the number of edges of LLM geometries with circular symmetry. If the diagram has O(1)

corners and O(N) boxes, it should be described by a smooth effective geometry. If the

diagram has O(N) corners, the corresponding microstates exhibit Planck scale structure

and should be described by a singular effective geometry. The number of corners translates

roughly into the number of distiguishable bunches of D-branes. More corners implies more

distinguishable D-branes, and hence more possible open strings excitations. Thus, brane

systems described by Young diagrams with many corners have many nearby states that

can be explored, implying a large entropy, signaling that one is getting nearer to a black

hole state.7

3.2 Interacting giants

In this section we will consider the process in which an excited giant graviton makes a

transition from one excited state to another excited state. The amplitude for this process

is given by

A =
〈(χ(1)

R,R′)†χ
(1)
T,T ′〉

√

〈(χ(1)
R,R′)†χ

(1)
R,R′〉〈(χ(1)

T,T ′)†χ
(1)
T,T ′〉

.

The representations R,R′ and T, T ′ are defined in figure 7. When we consider the case

that b1 and b2 are O(N) and a1 and a2 are O(1), this process looks like the open string

attached to the bound state of a1 sphere giants (of angular momentum b1 + b2) is emitted

and then absorbed by the bound state of a2 sphere giants (of angular momentum b1). The

leading contribution to the amplitude for this process is given by

A =
1√
a1

√

J(N − b1 − b2)

N(b1 + b2)
× 1√

a2

√

J(N − b1)

Nb1

(

1 + O

(

J4

N2

))

.

Notice that this amplitude is a product of the amplitude for the first bound state to emit

a string times the amplitude for the second bound state to absorb the string. This is

what one would guess for the amplitude if one assumes a local cubic interaction, and if in

addition the amplitude for a closed string to propagate from the first bound state to the

second bound state is 1. This second assumption is very natural, since in the free field

theory limit that we consider, the background is small in units of the string length.

7We thank David Berenstein for suggesting this explanation to us.
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Figure 7: The representations R and T used to compute the amplitude for a transition between

two excited giant graviton states. R′ and T ′ are obtained by removing the filled box from R and T

respectively.

We could also consider the case that a1 and a2 are O(N) and b1 and b2 are O(1).

In this case, the process we are studying looks like an open string attached to the bound

state of b1 AdS giants (of angular momentum a1 + a2) is emitted and then absorbed by

the bound state of b2 AdS giants (of angular momentum a1). The leading contribution to

the amplitude for this process is given by

A =
1√
b1

√

J(N + a1 + a2)

N(a1 + a2)
× 1√

b2

√

J(N + a1)

Na1

(

1 + O

(

J4

N2

))

.

Again, this amplitude is a product of the amplitude for the first bound state to emit a

string times the amplitude for the second bound state to absorb the string. Both transition

amplitudes received a contribution only from the F1 term.

3.3 Splitting and joining

The open strings that live on the world volume of the giant gravitons interact by splitting

and joining. In this subsection we consider the simplest possible process of two strings in

their ground states joining into one. The operators with one and two string excitations

are defined using the representations given in figure 8. The normalized amplitude for the

string joining process is given by

A =
〈(χ(1)

S,S′)†χ
(2)
R,R′′〉

√

〈(χ(1)
S,S′)†χ

(1)
S,S′〉〈(χ(2)

R,R′′)†χ
(2)
R,R′′〉

.

The correlator in the numerator will be related to the open string field theory vertex for the

open string field theory describing the strings attached to a giant graviton. A discussion of

this point for the case of BMN operators can be found in [35]. The open strings attached

to χ
(2)
R,R′′ are given by

W (1) = Y J1 , W (2) = Y J2.
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Figure 8: The representations used in the computation of the string joining amplitude. The repre-

sentation R′ is obtained by dropping the filled box in the second column of R. The representation

R′′ is obtained by dropping both filled boxes from R. The representation S′ is obtained by dropping

the filled box from S. We consider the situation that b1 is O(N) and b2 is O(1) and b2 ≫ 1.

The open string attached to χ
(1)
S,S′ is given by

W = Y J1+J2.

The computation of the denominator is straight forward using the rules given in section

2.5. The computation of the correlator in the numerator factorizes into a contribution

from the open string words and a contribution from contracting the Zs. The open string

correlator is treated in appendix G. We keep only the leading contribution, that is, the

terms labeled e and f in appendix G. The contribution coming from contracting the Zs

is treated in appendix H. Using these results, we find that the leading contribution to the

amplitude is given by

A = 2

√

N − b1

Nb1

1

b2 + 1

(

1 + O

(

J4

N2

))

.

We take b1 to be O(N) and b2 to be O(1). Thus, the two strings which join are on branes

that are nearby in spacetime. For this reason, we expect that we are probing the dynamics

of the brane world volume theory. Notice that this amplitude is independent of the angular

momentum of the open strings which join. To interpret this amplitude, note that arguing

exactly as in section 3.1.3, the two open strings that are interacting are separated by a

distance of (R is the radius of the S5)

r = R

[
√

N − b1

N
−

√

N − b1 − b2

N

]

≈ Rb2

2
√

N(N − b1)
.
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The distance r between the two interacting strings is determined by b2. b2 itself is obtained

by counting how many boxes on the Young diagram we pass through when moving on the

right most edge of the Young diagram, between the two strings that are interacting.8 This

is another indication that the geometry is coded into the Young diagram labeling the

operator. There is a connection between the coordinate that we have identified here and

the coordinates employed by LLM [23]. Recall that the boundary conditions for the LLM

solutions are specified by droplets on the y = 0 plane. The radial coordinate on the y = 0

plane is the distance r we have just introduced. The fact that the string sigma model

dynamics simplifies when expressed using these LLM coordinates was emphasized in [36].

In terms of this distance, we can write the amplitude for string joining as (we approximate

b2 + 1 ≈ b2)

A =
R

N
√

b1

1

r
.

To reproduce this amplitude in Born approximation we would need a 1
r (quark-antiquark)

potential in the brane world volume theory. Assume that the dominant contribution to

this potential will arise from the exchange of massless particles. To reproduce the potential

implied by our amplitude we see that the emergent Yang-Mills theory is a 3+1 dimensional

theory.

Although the fact that we have obtained a 1
r potential is encouraging, our argument

is not as clean as we would like. Indeed, if it is possible, we would have liked to separate

the two open strings in the directions belonging to the emergent world volume, and place

them at an equal radial distance. The separation appearing in our calculation is, if our

naive interpretation is correct, seems to be in the radial direction.

4. Discussion

In this paper we have initiated a systematic study of the operators dual to giant gravi-

tons with open strings attached to them. We have introduced a graphical notation, which

employs Young diagrams, for these operators. The computation of two point correlation

functions has been reduced to the application of three simple rules, which were summarized

in section 2.5. The rules themselves are written as graphical operations performed on the

Young diagram labels of the operators and the final result for the correlation function is

read directly off these labels. As a test of our results, we have written code to numerically

compute the values of a number of correlators. Our graphical rules are in complete agree-

ment with this “experimental data”. Using this technology, we have studied gravitational

radiation by giant gravitons and bound states of giant gravitons, transitions between ex-

cited giant graviton states and joining of open strings attached to the giant. The results

of our study suggest a number of interesting conclusions:

8We find that this is generally the case for string splitting/joining amplitudes: for general choices of

representations R and S, the joining/splitting amplitude falls off as the inverse of the number of boxes on

the Young diagram we pass through when moving on the right most edge of the Young diagram, between

the two strings that are interacting.
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• The Young diagram labeling of the operators dual to giant gravitons originally in-

troduced to study the c = 1 matrix model by Jevicki [37] and in the N = 4 super

Yang-Mills context by Corley, Jevicki and Ramgoolam, continues to provide a useful

labeling in the more general situation where the operators are dual to excited giant

gravitons.

• We have studied operators labeled by Young diagrams with m = O(1) columns,

each having p = O(N) rows. These are expected to be dual to a bound state of m

coincident sphere giants. The expected world volume theory of these m sphere giants

is a 3+1 dimensional Yang-Mills theory with gauge group U(m). This emergent

theory should be local on a space built out of the matrix degrees of freedom of the

original Yang-Mills theory. Thus this is a concrete toy model that can be used to

study how extra dimensions arise from matrix models. We have found some evidence

for this conjectured U(m) emergent gauge theory. After extracting the usual bosonic

enhancement factor of
√

m from the amplitude for gravitational radiation from a

bound state of m giant gravitons, we find an amplitude of O
(

1
m

)

, which is the

correct size to be interpreted as a non-planar correction in a Yang-Mills theory with

gauge group U(m). Further, by studying string joining and splitting we have found

evidence for a quark-antiquark potential that drops as 1
r , with r the distance between

the quark and the antiquark. This may be a signal that the emergent gauge theory

has three spatial dimensions. The distance r is defined by counting how many boxes

on the Young diagram we pass through when moving on the right most edge of the

Young diagram, between the two strings that are interacting. This is just one of

many examples where we have an indication that the geometry is coded into the

Young diagram labeling the operator.

• Operators labeled by Young diagrams with m = O(1) rows, each having p = O(N)

columns are dual to a bound state of AdS giants. We have again found evidence that

the world volume theory of these m AdS giants is described by a 3+1 dimensional

Yang-Mills theory with gauge group U(m).

• We have found signals of locality in the bulk spacetime. To probe this issue, the

basic process we have considered is the emission of a closed string from a bound state

of excited giant gravitons that are separated from a second (unexcited) bound state.

We have some evidence that widely separated bound states of giant gravitons do not

interact with each other.

• We have studied transitions between excited giant graviton states. The operators we

use for the study of transitions are naturally interpreted as dual to states of widely

separated bound states of giant gravitons. The transitions we study correspond to

the process where an open string attached to one of the bound states is emitted and

reabsorbed by the second bound state. The amplitude can be written neatly as the

product of the amplitude for the first bound state to emit a closed string with the

amplitude for the second bound state to absorb a closed string. This suggests that a
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description of the dynamics employing the giant graviton and string degrees of free-

dom will be a local theory with a cubic interaction vertex. It is also interesting to ask

if, using amplitude calculations of the type we have explored, such a dynamical de-

scription can be constructed. For relevant related work directed at (unexcited) giant

gravitons see for example [38] and for work directed at strings see for example [39].

• Our two point correlators for giants with a single string attached receive two con-

tributions, distinguished by how the open string words are contracted. We have

seen that these two contributions are naturally interpreted as a leading (open string

overlap) term and a (closed string interaction) correction term. The leading term de-

termines the normalizations of our amplitudes. The correction determines transition

amplitudes. We have been able to describe the circumstances in which the correction

is the same size as the leading term. In these situations we expect that quantum

gravity corrections become important and classical notions, such as spacetime and

locality, may not be applicable. Our results show that the number of corners in the

Young diagram provides important information about the dual effective geometry. If

the diagram has O(1) corners and O(N) boxes, it should be described by a smooth

effective geometry. If the diagram has O(N) corners, the corresponding microstates

exhibit Planck scale structure and should be described by a singular effective geom-

etry. This is natural in view of the LLM solutions: a Young diagram with many

corners corresponds to having many concentric, thin black rings on the y = 0 plane.

Since thin rings will effectively be averaged in a low energy description, this leads

to a gray disk on the y = 0 plane which does lead to a singular geometry. These

conclusions are consistent with the notion of the quantum foam described in [24].

• We find a nice confirmation of the physical picture developed in [19]. This allows us

to translate a given restricted Schur polynomial into giant graviton bound state plus

a specific set of string excitations. String words added at the end of a long row or a

long column correspond to open string excitations of the giant graviton bound state.

String words added in row i and column j with both i and j O(1) describe closed

strings.

One deficiency of our work, is that our results apply only in the zero coupling limit of

the theory. In a second article [17], we will show that the action of the F -terms can also be

summarized by a simple graphical rule. This allows us to account for the first perturbative

correction to the free field theory answer.
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A. Reduction formula for Schur polynomials

In this appendix we prove the reduction formula discovered in [21]. Our strategy is to

exploit known recursion relations obeyed by Schur polynomials corresponding to the com-

pletely symmetric and antisymmetric representations to prove the reduction formula for

these representations. We then recall the rewriting of an arbitrary Schur polynomial in

terms of the determinant of a matrix whose elements are Schur polynomials of only the sym-

metric or antisymmetric representations. Using this relation and the already established

result, we extend the proof of the reduction rule to an arbitrary Schur polynomial.

A.1 Statement of the reduction rule

Consider a Schur polynomial χ(λ1,λ2,...,λr) with r rows and λi boxes in the ith row. The

reduction rule we wish to prove says that the reduction of the Schur polynomial is given

by summing all Schur polynomials that can be obtained by removing a single box to leave

a valid Young diagram, and weighting each such term by the weight of the removed box9

Dχ(λ1,λ2,...,λr) = (N + λ1 − 1)χ(λ1−1,λ2,...,λr) + (N + λ2 − 2)χ(λ1,λ2−1,...,λr) + · · ·
+(N + λr − r)χ(λ1,λ2,...,λr−1).

A.2 Symmetric representations

The Schur polynomials corresponding to the completely symmetric representations χ(k)(Z)

obey Brioschi’s formulae [40]

χ(k)(Z) =
1

k

k
∑

p=1

Tr (Zp)χ(k−p)(Z).

In the above relation, χ(0)(Z) = 1 and χ(1)(Z) = Tr Z. Clearly,

Dχ(0)(Z) = 0, Dχ(1)(Z) = N = Nχ(0)(Z).

Make the inductive hypothesis

Dχ(l) = (N + l − 1)χ(l−1)(Z), k > l ≥ 1, (A.1)

which we have proved for l = 1. Reducing Brioschi’s formulae we have

Dχ(k)(Z) =
1

k

k
∑

p=1

(

DTr (Zp)χ(k−p)(Z) + Tr (Zp)Dχ(k−p)(Z)
)

.

9Recall that the box in the ith row (counting the top row as 1 and increasing by one for each row below

it) and jth column (counting the leftmost column as 1 and increasing by one for each column to the right)

has weight N − i + j.

– 38 –



J
H
E
P
0
6
(
2
0
0
7
)
0
7
4

Use the inductive hypothesis and DTr (Zp) = pTr (Zp−1) to obtain (χ(−1)(Z) ≡ 0)

Dχ(k)(Z) =
1

k

k
∑

p=1

(

pTr (Zp−1)χ(k−p)(Z) + Tr (Zp)(N + k − p − 1)χ(k−p−1)(Z)
)

=
N + k

k

k−1
∑

p=1

Tr (Zp)χ(k−p−1)(Z) +
N

k
χ(k−1)(Z)

=
N + k

k
(k − 1)χ(k−1) +

N

k
χ(k−1) = (N + k − 1)χ(k−1)(Z).

To get the last line above, we again used Brioschi’s formulae. This furnishes a proof by

induction of (A.1).

A.3 Antisymmetric representations

The Schur polynomials corresponding to the completely antisymmetric representations

χ(1k)(Z) obey Newton’s formulae [40]

χ(1k)(Z) =
1

k

k
∑

p=1

(−1)p−1Tr (Zp)χ(1k−p)(Z).

In the above relation, χ(10)(Z) = 1 and χ(11)(Z) = Tr Z. Clearly,

Dχ(10)(Z) = 0, Dχ(11)(Z) = N = Nχ(10)(Z).

Make the inductive hypothesis

Dχ(1l) = (N − l + 1)χ(1l−1)(Z), k > l ≥ 1, (A.2)

which we have proved for l = 1. Reducing Newton’s formulae we have

Dχ(1k)(Z) =
1

k

k
∑

p=1

(−1)p−1
(

DTr (Zp)χ(1k−p)(Z) + Tr (Zp)Dχ(1k−p)(Z)
)

.

Use the inductive hypothesis and DTr (Zp) = pTr (Zp−1) to obtain (χ(1−1)(Z) ≡ 0)

Dχ(1k)(Z) =
1

k

k
∑

p=1

(−1)p−1
(

pTr (Zp−1)χ(1k−p)(Z)

+Tr (Zp)(N − k + p + 1)χ(1k−p−1)(Z)
)

=
N − k

k

k−1
∑

p=1

(−1)p−1Tr (Zp)χ(1k−p−1)(Z) +
N

k
χ(1k−1)(Z)

=
N − k

k
(k − 1)χ(1k−1) +

N

k
χ(1k−1) = (N − k + 1)χ(1k−1)(Z).

To get the last line above, we again used Newton’s formulae. This furnishes a proof by

induction of (A.2).
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A.4 General representations

An arbitrary Schur polynomial can be expressed as [40]

χ(λ1,λ2,...,λr) = det(χ(λi−i+j)). (A.3)

As an example of this formula, it is simple to verify that

χ = det

[

χ χ

χ χ

]

.

Using the already established reduction formula for the Schur polynomials of the symmetric

representations we obtain

Dχ(λ1,λ2,...,λr) =
r

∑

k=1

det(χk,a
(λi−i+j)

) +
r

∑

k=1

det(χk,b
(λi−i+j)

),

where

χk,a
(λi−i+j) = χ(λi−i+j), i 6= k

= (N + λi − i)χ(λi−i+j−1) i = k,

χk,b
(λi−i+j) = χ(λi−i+j), i 6= k

= (j − 1)χ(λi−i+j−1) i = k,

The term
∑r

k=1 det(χk,b
(λi−i+j)) can be organized to give a sum of terms

r
∑

k=1

det(χk,b
(λi−i+j)) =

r
∑

i=2

Ti,

with the following structure (Ti is a sum of r terms)

Ti = det















0 0 · · · 0 A1,i−1 A1,i · · · A1,r−1

A2,1 A2,2 · · · A2,i−1 A2,i A2,i+1 · · · A2,r

A3,1 A3,2 · · · A3,i−1 A3,i A3,i+1 · · · A3,r

: : · · · : : : · · · :

Ar,1 Ar,2 · · · Ar,i−1 Ar,i Ar,i+1 · · · Ar,r















+ det















A1,1 A1,2 · · · A1,i−1 A1,i A1,i+1 · · · A1,r

0 0 · · · 0 A2,i−1 A2,i · · · A2,r−1

A3,1 A3,2 · · · A3,i−1 A3,i A3,i+1 · · · A3,r

: : · · · : : : · · · :

Ar,1 Ar,2 · · · Ar,i−1 Ar,i Ar,i+1 · · · Ar,r















+ · · ·

+ det















A1,1 A1,2 · · · A1,i−1 A1,i A1,i+1 · · · A1,r

A2,1 A2,2 · · · A2,i−1 A2,i A2,i+1 · · · A2,r

A3,1 A3,2 · · · A3,i−1 A3,i A3,i+1 · · · A3,r

: : · · · : : : · · · :

0 0 · · · 0 Ar,i−1 Ar,i · · · Ar,r−1















.
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Expanding the determinants for any given Ti the coefficient of any given monomial vanishes.

For example, consider the coefficient of the monomial A11A21
∏n

m=3 Amm coming from T1.

Only the first two terms contribute and they give

ǫ2134···n + ǫ1234···n = 0.

Thus,
r

∑

k=1

det(χk,b
(λi−i+j)) = 0,

so that

Dχ(λ1,λ2,...,λr) =

r
∑

k=1

det(χk,a
(λi−i+j))

= (N + λ1 − 1)χ(λ1−1,λ2,...,λr) + (N + λ2 − 2)χ(λ1,λ2−1,...,λr) + · · ·
+(N + λr − r)χ(λ1,λ2,...,λr−1),

which is the reduction rule for the general Schur polynomial. To obtain the last equality,

we needed to use the result (A.3). In using (A.3), only terms which correspond to a valid

Young diagram give a non-zero contribution, so that only these terms should be included

in the final result above.

We can give an alternative proof of exactly the same result, by writing the arbitrary

Schur polynomial in terms of the Schur polynomials corresponding to the totally antisym-

metric representations. For the Schur polynomial χ(λ1,λ2,...,λr), let µi denote the number of

boxes in the ith column. The alternative proof uses the formula [40]

χ(λ1,λ2,...,λr) = det(χ(1µi−i+j)).

A.5 Examples

To illustrate the reduction rule, we end this appendix with two examples

Dχ = (N + 2)χ + Nχ ,

Dχ = (N + 1)χ + (N − 2)χ .

B. Reduction formula for restricted Schur polynomials with one string

attached

In this appendix we will prove the reduction formula for restricted Schur polynomials with

a single string attached. The reduction formula we are interested in involves reduction with

respect to the open string attached to the giant. For the single restricted Schur polynomials

the reduction formula follows directly from the reduction formula for the Schur polynomials,

which we proved in appendix 1. Using very similar methods, a reduction formula for specific

sums over multiple restricted Schur polynomials can also be obtained, with little effort,
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from the reduction formula for the Schur polynomials. We conclude this appendix with a

proof of the reduction formula for the general restricted Schur polynomial, by employing

projection operators to implement the restriction on the trace. In this appendix we will

use W to denote the word describing the open string attached to the giant.

B.1 General comments

Recall that for the single restricted Schur polynomial, the dimension of the representation

of the Schur polynomial is equal to the dimension of the representation of the restriction,

so that the trace over R1 is the same as the trace over R. In this case we have

χ
(1)
R,R1

(Z,W ) =
1

(n − 1)!

∑

σ∈Sn

χR(σ)Zi1
iσ(1)

Zi2
iσ(2)

· · ·Zin−1

iσ(n−1)
W in

iσ(n)
.

The reduction formula for the single restricted Schur polynomials is particularly easy to

discuss because we can express the single restricted Schur polynomial in terms of the Schur

polynomial as

χ
(1)
R,R1

(Z,W ) = W i
j

d

dZi
j

χR(Z). (B.1)

Consequently, we have

DW χ
(1)
R,R1

(Z,W ) =
d

dW k
k

χ
(1)
R,R1

(Z,W ) =
d

dW k
k

W i
j

d

dZi
j

χR(Z) =
d

dZi
i

χR(Z).

Since we are considering a single restricted Schur polynomial, only one box can be removed

from R. The box to be removed is the box that was associated with W . Thus, to com-

pute the reduction DW χ
(1)
R,R1

(Z,W ) one simply removes the box associated with W and

multiplies by the weight of the removed box.

A similar approach to the reduction rule for multiple restricted Schur polynomials is

frustrated by the fact that (B.1) no longer applies. The best one can do is to sum over all

representations Rα that can be obtained from R by removing a single box. Each term in

this sum traces over a subspace Rα; the direct sum of the subspaces is R, ⊕αRα = R so

that the sum of these terms corresponds to tracing over R. Thus, in this case, we have

∑

α

χ
(1)
R,Rα

(Z,W ) = W i
j

d

dZi
j

χR(Z).

It is again straightforward to see that

DW

∑

α

χ
(1)
R,Rα

(Z,W ) =
d

dW k
k

∑

α

χ
(1)
R,Rα

(Z,W ) =
d

dW k
k

W i
j

d

dZi
j

χR(Z) =
d

dZi
i

χR(Z).

This result is recovered by computing the reduction DW χ
(1)
R,Rα

by removing the box asso-

ciated with W and multiplying by the weight of the removed box. In the remainder of this

appendix we develop projection operator methods that will allow us to prove that this is

indeed the correct rule.
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B.2 Tracing over subspaces

The definition of the restricted Schur polynomial dual to an excited giant graviton labeled

by representation R, with a single open string attached, involves a trace over one of the

subspaces that can be obtained by removing a single box from R to leave a valid Young

diagram. In this section our goal is to give a natural group theoretic description of tracing

over this subspace.

If the representation R corresponds to a Young diagram with n boxes, the possible sub-

spaces that are involved are associated to the irreducible representations of Sn−1 obtained

by restricting representation R (a representation of Sn) to an Sn−1 × S1 subgroup. Our

task is to distinguish between the different representations that can arise upon restriction.

To do this, consider the operator obtained by summing all two cycles of the Sn−1 subgroup

OSn−1(2) =

n−2
∑

i=1

n−1
∑

j=i+1

(ij).

Since this is a sum over all elements in the conjugacy class (2, 1n−3) of Sn−1, we know that

gOSn−1(2)g
−1 = OSn−1(2) ∀g ∈ Sn−1, i.e.

[

g,OSn−1(2)
]

= 0.

Thus, by Schur’s lemma, we know that OSn−1(2) takes the form λ1 when acting on each

irreducible representation of Sn−1. 1 denotes the identity element of Sn−1. Consider the

irreducible representations of Sn−1 labeled by Young diagram Ra with ra
i boxes in the ith

row of the Young diagram and ca
j boxes in the jth column of the Young diagram. Denote a

complete orthonormal basis of states belonging to this irreducible representation by |Ra, i〉;
i distinguishes the elements in this complete basis. We then have [41]

OSn−1(2)|i, Ra〉 =





∑

i

ra
i (ra

i − 1)

2
−

∑

j

ca
j (c

a
j − 1)

2



 |i, Ra〉.

Clearly, the operator

O⊥
Ra

= OSn−1(2) −
∑

i

ra
i (ra

i − 1)

2
+

∑

j

ca
j (c

a
j − 1)

2

projects onto the orthogonal complement of the subspace space spanned by the |Ra, i〉. By

appropriate use of the projectors, we can easily construct a projector which projects onto

any desired subspace.

As an example, consider the following irreducible representation of S6

R = .

After restricting to S5 × S1 the following representations are subduced

R1 = , R2 = R3 = .
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Denoting the OSn−1(2) eigenvalue of these irreducible representations by λi, i = 1, 2, 3 we

find

λ1 = −2, λ2 = 0, λ3 = 2.

Thus,

OSn−1(2) =
∑

i3

2|R3, i3〉〈R3, i3| −
∑

i1

2|R1, i1〉〈R1, i1|.

Using the fact that the carrier space of R is spanned by the bases of R1, R2 and R3 we

have

ΓR(1) =
∑

i1

|R1, i1〉〈R1, i1| +
∑

i2

|R2, i2〉〈R2, i2| +
∑

i3

|R3, i3〉〈R3, i3|,

where ΓR(1) denotes the identity element of S6 in representation R. It is now easy to verify

that the operator which projects onto R1 is

PR1 =
1

8
OSn−1(2)[OSn−1(2) − 2ΓR(1)] =

∑

i1

|R1, i1〉〈R1, i1|,

and consequently

Tr R1(σ) = Tr (PR1σ) =
1

8
Tr





4
∑

i=1

5
∑

j=i+1

(ij)

[

4
∑

k=1

5
∑

l=k+1

(kl) − 2

]

σ



 .

For Young diagrams with a large number of boxes it is often more convenient to

consider

OSn/Sn−1
(2) ≡ OSn(2) − OSn−1(2) =

n−1
∑

j=1

(nj),

which also clearly takes a distinct eigenvalue on each irreducible representation subduced

when the representation of Sn is restricted to the Sn−1 × S1 subgroup.

Although we have only discussed how to isolate representations subduced under the

restriction Sn → Sn−1 × S1 our methods obviously apply to the general case of subgroup

G, including the restriction Sn → Sn−k × (S1)
k; the discussion of the general case requires

only a trivial extension of what we have described.

B.3 Reduction formula in general

We will start in this section by considering the operator

χ̂R(Z,W ) =
1

(n − 1)!

∑

σ∈Sn

Zi1
iσ(1)

· · ·Zin−1

iσ(n−1)
W in

iσ(n)
ΓR(σ),

where ΓR(σ) is the matrix representing σ in irreducible representation R. There is a simple

relation between this operator and all the restricted Schur polynomials that can be obtained

by restricting R to Sn−1 × S1. Denote the possible irreducible representations which arise

upon restriction by Rα. Then

Tr Rα (χ̂R(Z,W )) =
1

(n − 1)!

∑

σ∈Sn

Zi1
iσ(1)

· · ·Zin−1

iσ(n−1)
W in

iσ(n)
Tr RαΓR(σ) = χ

(1)
R,Rα

(Z,W ).
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The sum over Sn can be reorganized into a sum over an Sn−1 subgroup and cosets of this

subgroup as follows (in what follows we use the cycle notation for permutations)

χ̂R(Z,W ) =
1

(n − 1)!

∑

σ∈Sn−1

[

Zi1
iσ(1)

· · ·Zin−1

iσ(n−1)
Tr (W )ΓR(σ)

+(WZ)i1iσ(1)
· · ·Zin−1

iσ(n−1)
ΓR((1, n)σ) + Zi1

iσ(1)
(WZ)i2iσ(2)

· · ·Zin−1

iσ(n−1)
ΓR((2, n)σ)

+ . . . + Zi1
iσ(1)

· · · (WZ)
in−1

iσ(n−1)
ΓR((n − 1, n)σ)

]

.

The Sn−1 subgroup is the subgroup of Sn comprising of the permutations σ that leave n

inert, i.e. σ(n) = n. It is now straight forward to compute the reduction

DW χ̂R(Z,W ) =
d

dW i
i

χ̂R(Z,W )

=
1

(n − 1)!

∑

σ∈Sn−1

[

NZi1
iσ(1)

· · ·Zin−1

iσ(n−1)
ΓR(σ)

+(Z)i1iσ(1)
· · ·Zin−1

iσ(n−1)
ΓR((1, n)σ) + Zi1

iσ(1)
(Z)i2iσ(2)

· · ·Zin−1

iσ(n−1)
ΓR((2, n)σ)

+ . . . + Zi1
iσ(1)

· · · (Z)
in−1

iσ(n−1)
ΓR((n − 1, n)σ)

]

=
1

(n − 1)!

∑

σ∈Sn−1

Zi1
iσ(1)

· · ·Zin−1

iσ(n−1)

[

N +

n−1
∑

i=1

ΓR ((i, n))

]

ΓR(σ)

=
1

(n − 1)!

∑

σ∈Sn−1

Zi1
iσ(1)

· · ·Zin−1

iσ(n−1)

[

N + OSn/Sn−1
(2)

]

ΓR(σ).

Tracing over the subspace of R corresponding to representation Rα we find

DW χ
(1)
R,Rα

(Z,W ) =
1

(n − 1)!

∑

σ∈Sn−1

Zi1
iσ(1)

· · ·Zin−1

iσ(n−1)
Tr Rα

([

N + OSn/Sn−1
(2)

]

ΓR(σ)
)

.

The Young diagram labeling Rα is obtained from R by removing a single box. Assume

that the removed box lies in th ath row and the bth column. If R has rR
i boxes in the ith

row and cR
j boxes in the jth column, then Rα will have

rRα

i = rR
i − δia

boxes in the ith row and

cRα

j = cR
j − δjb

boxes in the jth column. Consequently, when acting on those states of irreducible repre-

sentation R that span the Rα subspace, we obtain

OSn(2) =
∑

i

rR
i (rR

i − 1)

2
−

∑

j

cR
j (cR

j − 1)

2
,

OSn−1(2) =
∑

i

rRα

i (rRα

i − 1)

2
−

∑

j

cRα

j (cRα

j − 1)

2
,

OSn/Sn−1
(2) = OSn(2) − OSn−1(2) = rR

a − cR
b .
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Thus,

DW χ
(1)
R,Rα

(Z,W ) =
[

N + rR
a − cR

b

] 1

(n − 1)!

∑

σ∈Sn−1

Zi1
iσ(1)

· · ·Zin−1

iσ(n−1)
Tr Rα (ΓR(σ))

=
[

N + rR
a − cR

b

]

χRα(Z).

Note that
[

N + rR
a − cR

b

]

is the weight of the box that must be removed from R to obtain

Rα. This proves that the reduction DW χ
(1)
R,Rα

(Z,W ) is computed by removing the box

associated with W and multiplying by the weight of the removed box.

B.4 Examples

To illustrate the reduction rule for restricted Schur polynomials with a single string at-

tached, we end this appendix with two examples. Setting

R = , R1 = , R2 = ,

we have

DV χ
(1)
R,R1

= DV χ
(1)

V
= (N + 2)χ = (N + 2)χR1 ,

DV χ
(1)
R,R2

= DV χ
(1)

V

= Nχ = NχR2 .

C. Reduction formula for restricted Schur polynomials with multiple strings

attached

In this appendix we will explain how to develop reduction formulae for giant gravitons with

more than one string attached. Our strategy is to generalize the argument of appendix

B.3. For concreteness, consider the case when two strings are attached to the system of

giant gravitons. Start by introducing the operator

χ̂R(Z,W (1),W (2)) =
1

(n − 2)!

∑

σ∈Sn

Zi1
iσ(1)

· · ·Zin−2

iσ(n−2)
(W (1))

in−1

iσ(n−1)
(W (2))iniσ(n)

ΓR(σ). (C.1)

There is a simple relation between this operator and all the restricted Schur polynomials

that can be obtained by restricting R to Sn−2 × S1 × S1. Let R′
α denote the possible

irreducible representations which arise upon restricting R to Sn−1 × S1 and let R′′
α denote

the possible irreducible representations which arise upon restricting R to Sn−2 × S1 × S1.

Then

χ
(2)
R,R′′

α
(Z,W (1),W (2))=Tr R′′

α
(χ̂R(Z,W (1),W (2)))

=
1

(n−2)!

∑

σ∈Sn

Zi1
iσ(1)

· · ·Zin−2

iσ(n−2)
(W (1))

in−1

iσ(n−1)
(W (2))iniσ(n)

Tr R′′

α
(ΓR(σ)) .
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Consider (C.1); we will now write the sum over Sn as a sum over Sn−2 and its cosets. It is

not hard to see that

χ̂R(Z,W (1),W (2))=
1

(n − 2)!

∑

σ∈Sn−2

[

Zi1
iσ(1)

· · ·Zin−2

iσ(n−2)
Tr (W (1)W (2))ΓR((n, n − 1)σ)

+Zi1
iσ(1)

· · ·Zin−2

iσ(n−2)
Tr (W (1))Tr (W (2))ΓR(σ)

+
n−2
∑

b=1

Zi1
iσ(1)

· · ·(W (2)Z)ibiσ(b)
· · ·Zin−2

iσ(n−2)
Tr (W (1))ΓR((b, n)σ)

+

n−2
∑

b=1

Zi1
iσ(1)

· · ·(W (1)Z)ibiσ(b)
· · ·Zin−2

iσ(n−2)
Tr (W (2))ΓR((b, n − 1)σ)

+

n−2
∑

b=1

Zi1
iσ(1)

· · ·(W (1)W (2)Z)ibiσ(b)
· · ·Zin−2

iσ(n−2)
ΓR((b, n − 1)(n − 1, n)σ)

+

n−2
∑

b=1

Zi1
iσ(1)

· · ·(W (2)W (1)Z)ibiσ(b)
· · ·Zin−2

iσ(n−2)
ΓR((b, n − 1)(b, n)σ)

+
n−2
∑

a,b=1 a6=b

Zi1
iσ(1)

· · · (W (1)Z)iaiσ(a)
· · ·(W (2)Z)ibiσ(b)

· · ·Zin−2

iσ(n−2)
ΓR((a, n−1)(b, n)σ)

]

.

The subgroup Sn−2 consists of those permutations σ ∈ Sn that leave n and n − 1 inert:

σ(n − 1) = n − 1 and σ(n) = n. The reduction of this expression, with respect to W (1) is

DW (1) χ̂R(Z,W (1),W (2)) =
1

(n − 2)!

∑

σ∈Sn−2

[

Zi1
iσ(1)

· · ·Zin−2

iσ(n−2)
Tr (W (2))ΓR((n, n − 1)σ)

+NZi1
iσ(1)

· · ·Zin−2

iσ(n−2)
Tr (W (2))ΓR(σ)

+N

n−2
∑

b=1

Zi1
iσ(1)

· · · (W (2)Z)ibiσ(b)
· · ·Zin−2

iσ(n−2)
ΓR((b, n)σ)

+
n−2
∑

b=1

Zi1
iσ(1)

· · ·Zin−2

iσ(n−2)
Tr (W (2))ΓR((b, n − 1)σ)

+
n−2
∑

b=1

Zi1
iσ(1)

· · · (W (2)Z)ibiσ(b)
· · ·Zin−2

iσ(n−2)
ΓR((b, n − 1)(n − 1, n)σ)

+

n−2
∑

b=1

Zi1
iσ(1)

· · · (W (2)Z)ibiσ(b)
· · ·Zin−2

iσ(n−2)
ΓR((b, n − 1)(b, n)σ)

+

n−2
∑

a,b=1 a6=b

Zi1
iσ(1)

· · · (W (2)Z)ibiσ(b)
· · ·Zin−2

iσ(n−2)
ΓR((a, n − 1)(b, n)σ)

]

.

Collecting the second and third terms, we obtain

N

(n − 2)!

∑

σ∈Sn−2

[

Zi1
iσ(1)

· · ·Zin−2

iσ(n−2)
Tr (W (2))ΓR(σ)

+
n−2
∑

b=1

Zi1
iσ(1)

· · · (W (2)Z)ibiσ(b)
· · ·Zin−2

iσ(n−2)
ΓR((b, n)σ)

]

= N ⊕R′

α
χ̂R′

α
(Z,W (2)).
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Collect the fifth, sixth and seventh terms. After using (b, n− 1)(n− 1, n) = (n− 1, n)(b, n)

in the fifth term we obtain

1

(n − 2)!

∑

σ∈Sn−2

ÔSn/Sn−1
(2)

n−2
∑

b=1

Zi1
iσ(1)

· · · (W (2)Z)ibiσ(b)
· · ·Zin−2

iσ(n−2)
ΓR((b, n)σ)

= ÔSn/Sn−1
(2)[

∑

R′

α

χ̂R′

α
(Z,W (2)) − 1

(n − 2)!

∑

σ∈Sn−2

Zi1
iσ(1)

· · ·Zin−2

iσ(n−2)
Tr (W (2))ΓR(σ)],

where (i.e. here Sn−1 is the subgroup that leaves the index of W (1) inert, σ(n− 1) = n− 1)

ÔSn/Sn−1
(2) =

n−2
∑

a=1

ΓR ((a, n − 1)) + ΓR ((n, n − 1)) .

Finally, collecting the first and fourth terms we have

1

(n − 2)!

∑

σ∈Sn−2

Zi1
iσ(1)

· · ·Zin−2

iσ(n−2)
Tr (W (2))ÔSn/Sn−1

(2)ΓR(σ).

Thus, we have the remarkably simple result

DW (1)χ̂R(Z,W (1),W (2)) =
(

N + ÔSn/Sn−1
(2)

)

⊕R′

α
χ̂R′

α
(Z,W (2)). (C.2)

When acting on the subspace R′
α, [N + ÔSn/Sn−1

(2)] is equal to the weight of the box that

must be removed to get R′
α from R - we argued this in the previous appendix. To obtain

the reduction formula for the restricted Schur polynomial, we now simply need to trace

both sides over the representation of the restriction. There are two cases to consider:

Each string starts and ends on a specific brane: in this case we are tracing over an

“on the diagonal block”. The result is

DW (1)χ
(2)
R,R′′(Z,W (1),W (2)) = cR,R′χ

(1)
R′,R′′(Z,W (2)),

where cR,R′ is the weight of the box that must be removed from R to obtain R′.

The strings stretch between two branes: in this case we are tracing over an “off the

diagonal block”. The off diagonal blocks have row and column indices from different R′
α

irreducible representations. Our operator (C.2) is diagonal in R′
α indices so that the trace

over the off diagonal blocks vanish. Thus, in this case

DW (1)χ
(2)
R,R′′(Z,W (1),W (2)) = 0.

This is not unexpected. Indeed, reducing a restricted Schur polynomial removes the open

string with respect to which we are reducing. For the states with strings stretched between

the two branes it is not possible to remove a single string and still have a state consistent

with the Gauss law.
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C.1 An example

We will consider

R = .

By removing one box from R, the following two irreducible representations are subduced

R′
1 = R′

2 = .

By removing a box from R′
1 we subduce

R′′
1 = R′′

2 = ,

and by removing a box from R′
2 we subduce

R′′
3 = .

R′′
1 , R′′

2 and R′′
3 are all one dimensional irreducible representations. We need to make some

choices when specifying the subgroups with respect to which we restrict. Once one has

decided in what order the reductions of the restricted Schur polynomial will be computed,

there is a natural choice for these subgroups. In this example, we will reduce first with

respect to W (1) and then with respect to W (2). The choice of the order in which we restrict

is arbitrary - it corresponds to choosing the order in which we will Wick contract the open

string words attached to the giant. In view of our results from the previous subsection, it

is simplest to take

S3 = {1, (12), (14), (24), (124), (142)},

and

S2 = {1, (12)}.

States belonging to the carrier spaces of R′
1 and R′

2 are eigenvectors of the operator

Ô(2) = (12) + (14) + (24),

with eigenvalue

λR′

1
= 0, λR′

2
= 3.

Thus,

PR,R′

1
= 1 − 1

3
Ô(2),

projects from R onto R′
1 and

PR,R′

2
=

1

3
Ô(2),

projects from R onto R′
2. In a similar way, we can argue that

PR′

1,R′′

2
=

1 + (12)

2
,
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projects from R′
1 onto R′′

2 and

PR′

1,R′′

1
=

1 − (12)

2
,

projects from R′
1 onto R′′

1 . Composing these projections we easily find that PA,B projects

from A onto B where

PR,R′′

1
=

1 − (12)

2

[

1 − 1

3
Ô(2)

]

,

PR,R′′

2
=

1 + (12)

2

[

1 − 1

3
Ô(2)

]

,

PR,R′′

3
=

1

3
Ô(2).

Computing

χR,R′′

i
(Z,W (1),W (2)) =

1

2

∑

σ∈S4

Zi1
iσ(1)

Zi2
iσ(2)

(W (1))i3iσ(3)
(W (2))i4iσ(4)

Tr (PR,R′′

i
ΓR(σ)),

we find

χR,R′′

1
(Z,W (1),W (2)) =

1

2
×

[

Tr (Z)2Tr (W (1))Tr (W (2)) − Tr (Z2)Tr (W (1))Tr (W (2))

+Tr (ZW (1))Tr (Z)Tr (W (2)) + Tr (ZW (2))Tr (Z)Tr (W (1))

+Tr (Z)2Tr (W (1)W (2)) − Tr (Z2)Tr (W (1)W (2))

−Tr (Z2W (1))Tr (W (2)) − Tr (Z2W (2))Tr (W (1))

+Tr (ZW (1)W (2))Tr (Z) + Tr (ZW (2)W (1))Tr (Z)

−Tr (Z2W (1)W (2)) − Tr (Z2W (2)W (1))
]

,

χR,R′′

2
(Z,W (1),W (2)) =

1

2
×

[

Tr (Z)2Tr (W (1))Tr (W (2)) + Tr (Z2)Tr (W (1))Tr (W (2))

+5/3Tr (ZW (1))Tr (Z)Tr (W (2)) − Tr (Z)Tr (W (1))Tr (ZW (2))

+
1

3
Tr (W (2)W (1))Tr (Z)2 +

1

3
Tr (Z2)Tr (W (1)W (2))

−4

3
Tr (ZW (1))Tr (ZW (2)) +

5

3
Tr (Z2W (1))Tr (W (2))

−Tr (W (1))Tr (Z2W (2)) − 1

3
Tr (Z)Tr (ZW (1)W (2))

−1

3
Tr (Z)Tr (ZW (2)W (1)) − 1

3
Tr (Z2W (1)W (2))

−1

3
Tr (Z2W (2)W (1)) − 4

3
Tr (ZW (1)ZW (2))

]

,
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χR,R′′

3
(Z,W (1),W (2)) =

1

2
×

[

Tr (Z)2Tr (W (1))Tr (W (2)) + Tr (Z2)Tr (W (1))Tr (W (2))

−2/3Tr (ZW (1))Tr (Z)Tr (W (2)) + 2Tr (Z)Tr (W (1))Tr (ZW (2))

−1

3
Tr (W (2)W (1))Tr (Z)2 − 1

3
Tr (Z2)Tr (W (1)W (2))

−2

3
Tr (ZW (1))Tr (ZW (2)) − 2

3
Tr (Z2W (1))Tr (W (2))

+2Tr (W (1))Tr (Z2W (2)) − 2

3
Tr (Z)Tr (ZW (1)W (2))

−2

3
Tr (Z)Tr (ZW (2)W (1)) − 2

3
Tr (Z2W (1)W (2))

−2

3
Tr (Z2W (2)W (1)) − 2

3
Tr (ZW (1)ZW (2))

]

.

It is now a simple task to verify that

DW (1)χR,R′′

1
(Z,W (1),W (2)) = (N + 2)χR′

1,R′′

1
(Z,W (2))

=
N + 2

2

[

Tr (Z)2Tr (W (2)) − Tr (Z2)Tr (W (2))

+Tr (ZW (2))Tr (Z) − Tr (Z2W (2))
]

,

DW (1)χR,R′′

2
(Z,W (1),W (2)) = (N + 2)χR′

1,R′′

2
(Z,W (2))

=
N + 2

2

[

Tr (Z)2Tr (W (2)) + Tr (Z2)Tr (W (2))

−Tr (ZW (2))Tr (Z) − Tr (Z2W (2))
]

,

DW (1)χR,R′′

3
(Z,W (1),W (2)) = (N − 1)χR′

2,R′′

3
(Z,W (2))

=
N − 1

2

[

Tr (Z)2Tr (W (2)) + Tr (Z2)Tr (W (2))

+2Tr (ZW (2))Tr (Z) + 2Tr (Z2W (2))
]

,

in perfect agreement with the previous subsection. To construct the restricted Schur poly-

nomials dual to strings stretched between 2 branes, we need the intertwiners A and B

which satisfy

PR,R′′

2
A = APR,R′′

3
, BPR,R′′

2
= PR,R′′

3
B.

In this case, it is a simple matter to verify that suitable intertwiners are

A = MPR,R′′

3
(34)PR,R′′

2
, B = MPR,R′′

2
(34)PR,R′′

3
,

M =

√

dR′′

3

Tr (PR,R′′

3
(34)PR,R′′

2
(34))

. (C.3)

In terms of these two intertwiners, the remaining two restricted Schur polynomials we can

build are

χR,A(Z,W (1),W (2)) =
1

2

∑

σ∈S4

Zi1
iσ(1)

Zi2
iσ(2)

(W (1))i3iσ(3)
(W (2))i4iσ(4)

Tr (AΓR(σ)),

χR,B(Z,W (1),W (2)) =
1

2

∑

σ∈S4

Zi1
iσ(1)

Zi2
iσ(2)

(W (1))i3iσ(3)
(W (2))i4iσ(4)

Tr (BΓR(σ)).
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We find

χR,A(Z,W (1),W (2)) =
1

2
×

[

−Tr (ZW (1))Tr (Z)Tr (W (2)) + Tr (W (2)W (1))Tr (Z)2

+Tr (Z2)Tr (W (1)W (2)) − Tr (ZW (1))Tr (ZW (2))

−Tr (Z2W (1))Tr (W (2)) + 2Tr (Z)Tr (ZW (1)W (2))

−Tr (Z)Tr (ZW (2)W (1)) + 2Tr (Z2W (1)W (2))

− Tr (Z2W (2)W (1)) − Tr (ZW (1)ZW (2))
]

,

χR,B(Z,W (1),W (2)) =
1

2
×

[

−Tr (ZW (1))Tr (Z)Tr (W (2)) + Tr (W (2)W (1))Tr (Z)2

+Tr (Z2)Tr (W (1)W (2)) − Tr (ZW (1))Tr (ZW (2))

−Tr (Z2W (1))Tr (W (2)) − Tr (Z)Tr (ZW (1)W (2))

+2Tr (Z)Tr (ZW (2)W (1)) − Tr (Z2W (1)W (2))

+ 2Tr (Z2W (2)W (1)) − Tr (ZW (1)ZW (2))
]

.

It is now a simple task to verify that

DW (1)χR,A(Z,W (1),W (2)) = 0 = DW (1)χR,B(Z,W (1),W (2)),

in perfect agreement with the previous subsection.

C.2 Many strings

The reduction formula for operators with many strings attached can be derived following

the same basic procedure used in the two string example. Imagine we are going to reduce

a k string word with respect to W (k). One breaks the summation over the group into a

sum over a subgroup and its cosets

χ̂
(k)
R (Z,W (1), . . . ,W (k)) =

1

(n − k)!
×

∑

σ∈Sn−1

[

Zi1
iσ(1)

· · ·Zin−k

iσ(n−k)
(W (1))

in−k+1

iσ(n−k+1)
· · · (W (k−1))

in−1

iσ(n−1)
Tr (W (k))ΓR(σ)

+(W (k)Z)i1iσ(1)
· · ·Zin−k

iσ(n−k)
(W (1))

in−k+1

iσ(n−k+1)
· · · (W (k−1))

in−1

iσ(n−1)
ΓR((1, n)σ)

+Zi1
iσ(1)

(W (k)Z)i2iσ(2)
· · ·Zin−k

iσ(n−k)
(W (1))

in−k+1

iσ(n−k+1)
· · · (W (k−1))

in−1

iσ(n−1)
ΓR((2, n)σ)

+ . . . + Zi1
iσ(1)

· · ·Zin−k

iσ(n−k)
(W (1))

in−k+1

iσ(n−k+1)
· · · (W (k)W (k−1))

in−1

iσ(n−1)
ΓR((n − 1, n)σ)

]

.

The Sn−1 subgroup is the subgroup of Sn comprising of the permutations σ that leave n

inert, i.e. σ(n) = n. It is straight forward to compute the reduction

DW (k)χ̂
(k)
R (Z,W (1), . . . ,W (k)) =

1

(n − k)!
×

∑

σ∈Sn−1

Zi1
iσ(1)

· · ·Zin−k

iσ(n−k)
(W (1))

in−k+1

iσ(n−k+1)
· · · (W (k−1))

in−1

iσ(n−1)

[

N + OSn/Sn−1
(2)

]

ΓR(σ).
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Taking traces of this result gives the reduction rule. The result of this straightforward

analysis is that the reduction of an excited giant graviton is equal to the same operator

with the open string and its box removed, multiplied by the weight of the removed box.

To get this simple result, we need to choose a sequence of reductions and use this to define

the subgroups used in the restrictions, exactly as in the two string example we discussed in

the previous subsection. We will not provide the explicit details of this analysis; by closely

following our two string example, the diligent reader should be able construct this proof

herself.

C.3 Graphical notation

We have seen that, in general, an operator dual to an excited giant graviton takes the form

χ
(k)
R,R1

(Z,W (1), . . . ,W (k)) =
1

(n − k)!

∑

σ∈Sn

Tr (ΠΓR(σ))Tr (σZ⊗n−kW (1) · · ·W (k)),

where Π is a product of projection operators and/or intertwiners. To define Π we need

to specify the sequence of irreducible representations used to subduce R1 from R, as well

as the chain of subgroups to which these representations belong. Further, since in general

the row and column indices of the block that we trace over (denoted by R1 in the above

formula) need not coincide, we need to specify this data separately for both indices. In

this subsection we will explain a graphical notation that summarizes this information.

For the case that we have k strings, we label the words describing the open strings

1, 2, . . . , k. Denote the chain of subgroups involved in the reduction by Gk ⊂ Gk−1 ⊂ · · · ⊂
G2 ⊂ G1 ⊂ Sn. Gm is obtained by taking all elements Sn that leave the indices of the strings

W (i) with i ≤ m inert.

To specify the sequence of irreducible representations employed in subducing R1, place

a pair of labels into each box, a lower label and an upper label. The representations needed

to subduce the row label of R1 are obtained by starting with R. The second representation

is obtained by dropping the box with upper label equal to 1; the third representation is

obtained from the second by dropping the box with upper label equal to 2 and so on until

the box with label k is dropped. The representations needed to subduce the column label

are obtained in exactly the same way except that instead of using the upper label, we now

use the lower label.

See sections 2.2 and D.2 where this rule is illustrated graphically.

C.4 Examples

To illustrate our reduction rule we end this appendix by showing the sequence of reductions
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that can be performed in two examples:

DW (1)χ

1
3 2

= Nχ

2 3

,

DW (2)χ

3 2

= (N − 2)χ

3

,

DW (3)χ

3

= (N − 3)χ .

DW (1)χ

1
3
2

2
3

= Nχ

3
2

2
3

,

DW (2)χ

3
2

2
3

= 0.

D. Subgroup swap rule

To define the restricted Schur polynomials, we had to choose a sequence of subgroups that

are used to perform the restrictions. Choosing different sequences of subgroups leads to

different polynomials. Consider for example

χ
(k)
R,R1

(Z,W (1), . . . ,W (k)) =
1

(n − k)!

∑

σ∈Sn

Tr R1(ΓR(σ))Tr (σZ⊗n−kW (1) · · ·W (k)),

If we first restrict with respect to the subgroup that leaves the index of W (1) inert and

second with respect to the subgroup that leaves the index of W (2) inert, then in general,

we’ll get a different polynomial to what we’d get if we first restrict with respect to the

subgroup that leaves the index of W (2) inert and then with respect to the subgroup that

leaves the index of W (1) inert. In this appendix we will derive a relation between these

two sets of polynomials, which we call the “subgroup swap rule”. This rule is useful in the

computation of two point functions.

D.1 When stretched strings states can be ignored

For the sake of clarity, we will develop our rule using a specific example. Consider

χ
(2)
R,R′′

2
(Z,W (1),W (2)) =

1

2!

∑

σ∈S4

Tr R′′

2
(ΓR(σ))Tr (σZ⊗2W (1)W (2))

=
1

2!

∑

σ∈S4

Tr R′′

2
(ΓR(σ))Zi1

iσ(1)
Zi2

iσ(2)
(W (1))i3iσ(3)

(W (2))i4iσ(4)
,
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with the representation

R = ,

of S4. Restricting to an S3 subgroup, we can obtain

R′
1 = or R′

2 = .

Restricting further to S2, R′
1 subduces

R′′
1 = or R′′

2 = ,

while R′
2 subduces

R′′
3 = .

The two possible S3 subgroups we will consider are

S3 = {1, (12), (13), (23), (123), (132)},

which corresponds to leaving the index of W (2) inert, and

S3 = {1, (12), (14), (24), (124), (142)},

which corresponds to leaving the index of W (1) inert. We denote the restricted Schur

polynomial obtained holding W (1) inert by χ
(2)
R,R′′

i

∣

∣

∣

1
and the Schur polynomial obtained by

holding W (2) inert by χ
(2)
R,R′′

i

∣

∣

∣

2
. Regardless of which S3 subgroup we use, the S2 subgroup

we consider is

S2 = {1, (12)},

The representation appears only once under the restriction of S4 to S2 so that we must

have

χ
(2)
R,R′′

1

∣

∣

∣

1
= χ

(2)
R,R′′

1

∣

∣

∣

2
.

appears with multiplicity 2 under the restriction of S4 to S2. In general, the subspaces

corresponding to irreducible representations R′′
2 and R′′

3 will depend on the particular sub-

groups employed in the restrictions. Denote the projection operators which project from

R to R′′
2 or R′′

3 using the subgroup which keeps W (1) inert by PR,R′′

2
|1 and PR,R′′

3
|1, and

denote the projection operators which keep W (2) inert by PR,R′′

2
|2 and PR,R′′

3
|2. We have

PR,R′′

2
|1 6= PR,R′′

2
|2, PR,R′′

3
|1 6= PR,R′′

3
|2,

PR,R′′

2
|1 + PR,R′′

3
|1 = PR,R′′

2
|2 + PR,R′′

3
|2.

Further, since PR,R′′

a
|iPR,R′′

b
|j commutes with every element of S2, we know by Schur’s

Lemma that, when acting on the R′′
a subspace, (unless specified otherwise, all traces in
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this section are over R; 1 in the next equation is the identity operator acting on the R′′
a

subspace)

PR,R′′

a
|iPR,R′′

b
|j = λ1, λ =

Tr (PR,R′′

a
|iPR,R′′

b
|j)

dR′′

a

.

It is now straight forward to obtain

χ
(2)
R,R′′

2
|1=

1

2!

∑

σ∈S4

Tr (PR,R′′

2
|1ΓR(σ))Tr (σZ⊗2W (1)W (2))

=
1

2!

∑

σ∈S4

Tr(PR,R′′

2
|1(PR,R′′

2
|1+PR,R′′

3
|1)ΓR(σ)(PR,R′′

2
|1+PR,R′′

3
|1))Tr (σZ⊗2W (1)W (2))

=
1

2!

∑

σ∈S4

Tr(PR,R′′

2
|1(PR,R′′

2
|2+PR,R′′

3
|2)ΓR(σ)(PR,R′′

2
|2+PR,R′′

3
|2))Tr (σZ⊗2W (1)W (2))

=
1

2!

∑

σ∈S4

Tr (PR,R′′

2
|1PR,R′′

2
|2PR,R′′

2
|2ΓR(σ)PR,R′′

2
|2)Tr (σZ⊗2W (1)W (2))

+
1

2!

∑

σ∈S4

Tr (PR,R′′

2
|1PR,R′′

3
|2PR,R′′

3
|2ΓR(σ)PR,R′′

3
|2)Tr (σZ⊗2W (1)W (2))

+ stretched string states

=a
1

2!

∑

σ∈S4

Tr (PR,R′′

2
|2ΓR(σ))Tr (σZ⊗2W (1)W (2))

+b
1

2!

∑

σ∈S4

Tr (PR,R′′

3
|2ΓR(σ))Tr (σZ⊗2W (1)W (2)) + stretched string states

=aχ
(2)
R,R′′

2
|2+bχ

(2)
R,R′′

3
|2+ stretched string states,

where the “stretched string states” terms are obtained by tracing over off the diagonal

blocks and

a =
Tr (PR,R′′

2

∣

∣

∣

1
PR,R′′

2

∣

∣

∣

2
)

dR′′

2

, b =
Tr (PR,R′′

2

∣

∣

∣

1
PR,R′′

3

∣

∣

∣

2
)

dR′′

2

.

After inserting the explicit expressions for the projection operators, it is easy to see that the

computation of a and b reduce to a sum of characters. Performing this simple computation

we obtain

a =
1

9
, b =

8

9
.

Using the subgroup swap rule we can compute the reduction of a restricted Schur

polynomial, with one or two strings attached, with respect to any of the open strings

attached to the giant. Of course, the “stretched string states” terms do not contribute and

it is for this reason that we have not computed their explicit form. For the example we

used in this appendix,

DW (1)χ
(2)
R,R′′

2

∣

∣

∣

1
(Z,W (1),W (2)) = DW (1)χ 1

2

∣

∣

∣

1
= (N + 2)χ

2
= (N + 2)χ

(1)
R′

1,R′′

2
(Z,W (2)),

DW (2)χ
(2)
R,R′′

2

∣

∣

∣

1
(Z,W (1),W (2)) = DW (2)

(

1

9
χ

(2)
R,R′′

2

∣

∣

∣

2
+

8

9
χ

(2)
R,R′′

3

∣

∣

∣

2

)
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= DW (2)





1

9
χ 2

1

∣

∣

∣

2
+

8

9
χ 1

2

∣

∣

∣

2





=
N + 2

9
χ

1
+

8(N − 1)

9
χ 1

=
N + 2

9
χ

(1)
R′

1,R′′

2
(Z,W (1)) +

8(N − 1)

9
χ

(1)
R′

2,R′′

3
(Z,W (1)).

We conclude this appendix with an efficient method to compute Tr (PR,R′′

a
|nPR,R′′

a
|n−1)

which appears in the application of the subgroup swap rule. We assume, in the following

discussion, that the string label matches the index label, i.e. PR,R′′

a
|n = the projector

obtained using the subgroup which holds the index of string W (n) inert = the projector

obtained using the subgroup which holds the index n inert. Start by noting that

PR,R′′

a
|n = ΓR ((n, n − 1)) PR,R′′

a
|n−1ΓR ((n, n − 1)) ,

so that

Tr (PR,R′′

a
|nPR,R′′

a
|n−1) = Tr

(

PR,R′′

a
|nΓR ((n, n − 1)) PR,R′′

a
|nΓR ((n, n − 1))

)

≡ Tr (M2),

where

Mαβ ≡ 〈R′′
a, α|ΓR ((n, n − 1)) |R′′

a, β〉, α, β = 1, . . . , dR′′

a
.

Recall that R′′
a is a representation of the subgroup of Sn which includes all elements which

leave n and n − 1 inert. Clearly, (n, n − 1) commutes with every element of the subgroup

and hence, by Schur’s lemma

Mαβ =
Tr (M)

dR′′

a

δαβ .

It is now a simple matter to obtain

Tr (PR,R′′

a
|nPR,R′′

a
|n−1) =

(Tr (M))2

dR′′

a

=

(

Tr R′′

a
(ΓR ((n, n − 1)))

)2

dR′′

a

.

Thus, the computation of the trace of the projectors has been reduced to the computation

of Tr R′′

a
(ΓR ((n, n − 1))). To derive a simple formula for Tr R′′

a
(ΓR ((n, n − 1))), note that

Tr R′′

a
(ΓR ((n, n − 1)(n, i))) = Tr

(

PR,R′′

a
|nΓR ((n, n − 1)) ΓR ((n, i))

)

= Tr
(

PR,R′′

a
|n−1ΓR ((n − 1, n)) ΓR ((n − 1, i))

)

= Tr
(

ΓR ((n − 1, n)) PR,R′′

a
|nΓR ((n − 1, i))

)

= Tr
(

PR,R′′

a
|nΓR ((n − 1, i)) ΓR ((n − 1, n))

)

= Tr R′′

a
(ΓR ((n − 1, i)(n, n − 1))) .

Now consider (1 is the identity matrix)

dR′′

a
= Tr R′′

a
(1)

= Tr R′′

a
(ΓR ((n, n − 1)(n, n − 1)))

= Tr R′′

a
(ΓR ((n, n − 1)(n, n − 1)))

– 57 –



J
H
E
P
0
6
(
2
0
0
7
)
0
7
4

+
n−2
∑

i=1

[

Tr R′′

a
(ΓR ((n, n − 1)(n, i))) − Tr R′′

a
(ΓR ((n − 1, i)(n, n − 1)))

]

=

n−1
∑

i=1

Tr R′′

a
(ΓR ((n, n − 1)(n, i))) −

n−2
∑

j=1

Tr R′′

a
(ΓR ((n − 1, j)(n, n − 1)))

= (cR,R′ − cR′,R′′

a
)Tr R′′

a
(ΓR ((n, n − 1))) .

Thus, we obtain

Tr R′′

a
(ΓR ((n, n − 1))) =

dR′′

a

cR,R′ − cR′,R′′

a

,

Tr (PR,R′′

a
|nPR,R′′

a
|n−1) =

dR′′

a

(cR,R′ − cR′,R′′

a
)2

.

D.2 Stretched string contributions

In the previous subsection, we have written down the result of performing the subgroup

swap, up to the stretched string contributions which we dropped. This is all that is needed

to compute two point functions of operators that have one or two strings attached. This

follows because one reduces the result of the swap, and the reduction of twisted strings

vanishes. If however, one considers more than two strings, the stretched string states need

to be accounted for. In this section we will obtain the explicit form of the stretched string

states.

To make our discussion concrete, we will frame it in a specific example. Consider the

restricted Schur polynomial

χ 1
2

3

|1|2|3.

The chain of representations involved in the restrictions are

→ → → .

The first subgroup is obtained as the set of all elements of S6 that leave the index of

string 1 inert; the second subgroup is obtained as the set of all elements of S6 that leave

the indices of strings 1 and 2 inert and the third subgroup is obtained as the set of all

elements of S6 that leave the indices of strings 1, 2 and 3 inert. We have indicated this in

our operator with the symbol |1|2|3. We will denote the states that span the carrier space

of the representation obtained by the above restriction by |(1, 2, 3); i〉A . The (1, 2, 3)

labels specify the subgroups used in the restriction, i = 1, 2 labels the vectors in the basis

and A labels the space obtained. We can always arrange things so that we are working

with a unitary representation. In this case, the operator projecting onto this subspace is

given by

PA(1, 2, 3) =
∑

i

|(1, 2, 3); i〉AA〈(1, 2, 3); i|.
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We are interested in swapping the 2 ↔ 3 subgroups. The states spanning the carrier

space of the representations defined by the restrictions used to construct

χ 1
2

3

|1|3|2 and χ 1
3

2

|1|3|2,

are denoted by |(1, 3, 2); i〉A and |(1, 3, 2); i〉B respectively. The corresponding projection

operators are

PA(1, 3, 2) =
∑

i

|(1, 3, 2); i〉AA〈(1, 3, 2); i|, PB(1, 3, 2) =
∑

i

|(1, 3, 2); i〉B B〈(1, 3, 2); i|.

From the previous subsection, it is clear that the direct sum of the subspaces with bases

{|(1, 3, 2); i〉A} and {|(1, 3, 2); i〉B} is the same space as the direct sum of the subspaces with

bases {|(1, 2, 3); i〉A} and {|(1, 2, 3); i〉B}. Thus, we can write

|(1, 2, 3); i〉A =
∑

j

αij|(1, 3, 2); j〉A +
∑

j

βij |(1, 3, 2); j〉B .

Using this expression, it is clear that

PA(1, 2, 3)il =
∑

j,k

[α∗
ij |(1, 3, 2); j〉AA〈(1, 3, 2); k|αkl + α∗

ij |(1, 3, 2); j〉AB〈(1, 3, 2); k|βkl

+β∗
ij|(1, 3, 2); j〉B A〈(1, 3, 2); k|αkl + β∗

ij |(1, 3, 2); j〉B B〈(1, 3, 2); k|βkl ].

The subgroup swap rule tells us that the piece of this operator that acts in the |(1, 3, 2); j〉A
subspace (the first of the four terms) is proportional to PA(1, 3, 2) and hence is full rank.

This implies that αij is full rank. Thus, we can now use αij to define an equivalent

representation, with a new basis ∼ ∑

j(α
−1)ij |(1, 3, 2); j〉A . This shows that we can always

take αij proportional to the identity. In a similar way, we can always ensure that βij is

proportional to the identity, so that

|(1, 2, 3); i〉A = α|(1, 3, 2); i〉A + β|(1, 3, 2); i〉B .

Consistency with the subgroup swap rule of the previous section now implies that

α2 =
3

4
, β2 =

1

4
.

By a convenient choice of phases, we can now write

|(1, 2, 3); i〉A =

√
3

2
|(1, 3, 2); i〉A + eiφ 1

2
|(1, 3, 2); i〉B .

The remaining phase φ is convention dependent. With the conventions we use here, if one

is swapping indices n and m where the subgroups were defined by first holding n fixed and

then holding m fixed, and if cn and cm are the weights of the associated boxes in the Young

diagram, we have

eiφ =
cn − cm

|cn − cm| .
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It is now clear that

A〈(1, 2, 3); i|ΓR(σ)|(1, 2, 3); i〉A =
3

4
A〈(1, 3, 2); i|ΓR(σ)|(1, 3, 2); i〉A

+
1

4
B〈(1, 3, 2); i|ΓR(σ)|(1, 3, 2); i〉B

+

√
3

4
A〈(1, 3, 2); i|ΓR(σ)|(1, 3, 2); i〉B

+

√
3

4
B〈(1, 3, 2); i|ΓR(σ)|(1, 3, 2); i〉A ,

and hence

χ 1
2

3

|1|2|3 =
3

4
χ 1

2
3

|1|3|2 +
1

4
χ 1

3
2

|1|3|2 +

√
3

4
χ 1

2
3

3
2

|1|3|2 +

√
3

4
χ 1

3
2

2
3

|1|3|2.

Our conventions for the graphical notation is spelled out by indicating the “trace” being

used to define the operator

χ 1
2
3

3
2

|1|3|2 ↔
∑

i

A〈(1, 3, 2); i|ΓR(σ)|(1, 3, 2); i〉B = Tr (PABΓR(σ)),

PAB = N PA(1, 3, 2)ΓR ((23)) PB(1, 3, 2),

N =

√

√

√

√

√

d

Tr (PA(1, 3, 2)ΓR ((23)) PB(1, 3, 2)ΓR ((23)))
,

where d is the dimension of the rep of S3, and

χ 1
3
2

2
3

|1|3|2 ↔
∑

i

B〈(1, 3, 2); i|ΓR(σ)|(1, 3, 2); i〉A = Tr (PBAΓR(σ)),

PBA = N PB(1, 3, 2)ΓR ((23)) PA(1, 3, 2).

Our graphical notation summarizes how the operator in constructed. In computing the

trace for the operator above, the bra and kets that are summed are from different carrier

spaces. Each carrier space is naturally associated with a restricted Schur polynomial with

no stretched strings, in the sense that the restriction used to define the polynomial is the

restriction used to define the carrier space. In labelling the boxes, if the label in a box of

the restricted Schur polynomial associated with the bra is not the same as the label in the

corresponding box in the ket, then the bra label is written above the ket label.

The same rules can be used to swap subgroups for twisted string states. To illustrate

this, imagine that we swap 3 ↔ 1. Now, four carrier spaces participate. Their bases are de-

noted {|(3, 2, 1); i〉A}, {|(3, 2, 1); i〉B}, {|(3, 2, 1); i〉C } and {|(3, 2, 1); i〉D}. The restrictions
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needed to define these bases are specified by the following four operators

χ 1
2

3

|3|1|2, χ 1
3

2

|3|1|2, χ 3
2

1

|3|1|2, χ 3
1

2

|3|1|2,

respectively. Arguing exactly as above, we have

|(1, 3, 2); i〉A =

√
15

4
|(3, 1, 2); i〉A +

1

4
|(3, 1, 2); i〉C ,

|(1, 3, 2); i〉B =

√
3

2
|(3, 1, 2); i〉B +

1

2
|(3, 1, 2); i〉D .

Thus,

∑

i

A〈(1, 3, 2); i|ΓR(σ)|(1, 3, 2); i〉B =

3
√

5

8

∑

i

A〈(3, 1, 2); i|ΓR(σ)|(3, 1, 2); i〉B +

√
15

8

∑

i

A〈(3, 1, 2); i|ΓR(σ)|(3, 1, 2); i〉D

+

√
3

8

∑

i

C〈(3, 1, 2); i|ΓR(σ)|(3, 1, 2); i〉B +
1

8

∑

i

C〈(3, 1, 2); i|ΓR(σ)|(3, 1, 2); i〉D

and consequently

χ 1
2
3

3
2

|1|3|2 =
3
√

5

8
χ 1

2
3

3
2

|3|1|2 +

√
15

8
χ 1

3
2
1

3
2

|3|1|2 +

√
3

8
χ 3

1
2
3

1
2

|3|1|2 +
1

8
χ 3

2
1

1
2

|3|1|2.

E. Constrained two point functions

In the computation of two point functions of restricted Schur polynomials, we have seen

that we need to evaluate two point functions of restricted Schur polynomials in which we do

not sum over all possible contractions, but rather, we contract the ith field in the first Schur

polynomial with the ith field in the second Schur polynomial, with i = n, n − 1, . . . , n − k.

Recall that we denote this correlator by

〈χR,R′(Z)(χS,S′(Z))†〉
∣

∣

∣

n,n−1,...,n−k
.

R is a representation of Sn; R′ is a representation of Sn−k−1. Thus, k + 1 boxes must be

removed from R to obtain R′. In this appendix we will evaluate these constrained two

point functions.

The computation is straightforward. We use the methods of [10]. See also [16] where

the correlator

〈χR,R′(Z)(χS,S′(Z))†〉
∣

∣

∣

n
,
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was already studied. We find (we assume that R and S are unitary representations with n

boxes, without a loss of generality)

G2 ≡ (n!)2〈χR,R′(Z)(χS,S′(Z))†〉
∣

∣

∣

n,n−1,...,n−k

=
∑

i,j

∑

σ,τ∈Sn

Tr R′(ΓR(σ))Tr S′(ΓS(τ))∗〈
n−k−1
∏

a=1

Zia
iσ(a)

(Z†)
jτ(a)

ja
〉

n
∏

b=n−k

〈Zib
iσ(b)

(Z†)
jτ(b)

jb
〉

=
∑

i,j

∑

σ,τ∈Sn

Tr R′(ΓR(σ))Tr S′(ΓS(τ))∗
∑

α∈Sn−k−1

n−k−1
∏

a=1

〈Zia
iσ(a)

(Z†)
jτ(α(a))

jα(a) 〉
n

∏

b=n−k

〈Zib
iσ(b)

(Z†)
jτ(b)

jb
〉

The sum
∑

α∈Sn−k−1
is needed to include all possible contractions. Again ignoring space-

time dependence, the two point function we use is

〈Zi
j(Z

†)kl 〉 = δi
lδ

k
j .

Using this two point function, we obtain

G2 =
∑

i,j

∑

σ,τ∈Sn

Tr R′(ΓR(σ))Tr S′(ΓS(τ))∗
∑

α∈Sn−k−1

[

n−k−1
∏

l=1

δil
jα(l)

δ
jτ(α(l))

iσ(l)

]

n
∏

l=n−k

δil
jl
δ
jτ(l)

iσ(l)

=
∑

i,j

∑

σ,τ∈Sn

Tr R′(ΓR(σ))Tr S′(ΓS(τ))∗
∑

α∈Sn|α(n)=n,...,α(n−k)=n−k

[

n
∏

l=1

δil
jα(l)

δ
jτ(α(l))

iσ(l)

]

=
∑

i,j

∑

σ,τ∈Sn

Tr R′(ΓR(σ))Tr S′(ΓS(τ))∗
∑

α∈Sn|α(n)=n,...,α(n−k)=n−k

[

n
∏

l=1

δ
iσ(l)

jα(σ(l))
δ
jτ(α(l))

iσ(l)

]

=
∑

j

∑

σ,τ∈Sn

Tr R′(ΓR(σ))Tr S′(ΓS(τ))∗
∑

α∈Sn|α(n)=n,...,α(n−k)=n−k

[

n
∏

l=1

δ
jτ(α(l))

jα(σ(l))

]

=
∑

σ,τ∈Sn

Tr R′(ΓR(σ))Tr S′(ΓS(τ))∗
∑

α∈Sn|α(n)=n,...,α(n−k)=n−k

NC(α−1·τ−1·α·σ)

where C(α−1 · τ−1 · α · σ) is the number of cycles in the permutation α−1 · τ−1 · α · σ and

Sn|α(n)=n,...,α(n−k)=n−k are those elements α of Sn that have α(n) = n, . . . , α(n−k) = n−k.

Inserting the delta-function we find

G2 =
∑

σ,τ∈Sn

Tr R′(ΓR(σ))Tr S′(ΓS(τ))∗
∑

α∈Sn|α(n)=n,...,α(n−k)=n−k

∑

β∈Sn

NC(β)δ(β−1 · α−1 · τ−1 · α · σ)

=
∑

τ∈Sn

∑

α∈Sn|α(n)=n,...,α(n−k)=n−k

∑

β∈Sn

Tr R′(ΓR(α−1ταβ))Tr S′(ΓS(τ))∗NC(β).

We now compute
∑

τ∈Sn

Tr R′(ΓR(α−1ταβ))Tr S′(ΓS(τ))∗.

We need to consider two possibilities: (I) the strings of the original operator are attached

to a specific giant so that the traces are over “on the diagonal blocks,” and (II) some
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strings of the original operator stretch between the giants so that the traces are over “off

the diagonal blocks.” For case (I) we can write (unless specified otherwise, all traces are

over R)

∑

τ∈Sn

Tr R′(ΓR(α−1ταβ))Tr S′(ΓS(τ))∗ =
∑

τ∈Sn

Tr (PR,R′ΓR(α−1ταβ))Tr (PS,S′ΓS(τ))∗

=
∑

τ∈Sn

dR
∑

i,j,k,l=1

(

ΓR(αβ)PR,R′ΓR(α−1)
)

ij
(P ∗

S,S′)klΓR(τ)jiΓS(τ)∗lk.

where PR,R′ and PS,S′ are projection operators and dR is the dimension of the irreducible

representation R of Sn. Using the orthogonality relation

∑

σ∈G

(ΓR(σ))il (ΓS(σ)∗)sm =
g

dR
δisδlmδRS

with g = |G|, and the fact that the projection operators are hermittian ((P ∗
S,S′)kl =

(PS,S′)lk)we obtain

∑

τ∈Sn

Tr R′(ΓR(α−1ταβ))Tr S′(ΓS(τ))∗ = δRSTr (ΓR(αβ)PR,R′ΓR(α−1)PR,S′)
n!

dR

= δRSδR′S′Tr (ΓR(αβ)PR,R′ΓR(α−1))
n!

dR

= δRSδR′S′Tr (ΓR(β)PR,R′)
n!

dR

= δRSδR′S′Tr R′(ΓR(β))
n!

dR
.

To obtain this result, we used the fact that since α ∈ Sn−k−1 we have

PR,R′ΓR(α−1)PR,S′ = δR′S′PR,R′ΓR(α−1)PR,R′ = δR′S′PR,R′ΓR(α−1).

Thus,

G2 =
∑

α∈Sn|α(n)=n,...,α(n−k)=n−k

∑

β∈Sn

NC(β)Tr R′(ΓR(β))
n!

dR
δRSδR′S′

=
n!(n − k − 1)!

dR
δRSδR′S′

∑

β∈Sn

NC(β)Tr R′(ΓR(β)).

Our result for case (I) is therefore

〈χR,R′(Z)χS,S′(Z)†〉
∣

∣

∣

n,n−1,...,n−k
=

(n − k − 1)!

n!dR
δR→R′,S→S′

∑

β∈Sn

NC(β)Tr R′(ΓR(β)).

The delta function δR→R′,S→S′ is only non-zero if the complete chain of representations

used to restrict R to R′ match with the representations used to restrict S to S′.
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For case (II) we can write

∑

τ∈Sn

Tr T ′,R′(ΓR(α−1ταβ))Tr U ′,S′(ΓS(τ))∗

=
∑

τ∈Sn

Tr (AT ′R′PR,R′ΓR(α−1ταβ))Tr (AU ′S′PS,S′ΓS(τ))∗

=
∑

τ∈Sn

dR
∑

i,j,k,l=1

(

ΓR(αβ)AT ′R′PR,R′ΓR(α−1)
)

ij
(A∗

U ′S′P ∗
S,S′)klΓR(τ)jiΓS(τ)∗lk.

where PR,R′ and PS,S′ are projection operators and AT ′R′ and AU ′S′ are intertwiners defined

by

AT ′R′PR,R′ = PR,T ′AT ′R′ , AU ′S′PS,S′ = PS,U ′AU ′S′ .

Now, after using the orthogonality relation, the hermitticity of the projection operator,

A†
S′U ′ = AU ′S′ and the fact that α−1 ∈ Sn−k−1 we have

∑

τ∈Sn

Tr T ′,R′(ΓR(α−1ταβ))Tr U ′,S′(ΓS(τ))∗=δRSTr (ΓR(αβ)AT ′R′PR,R′ΓR(α−1)PR,S′AS′U ′)
n!

dR

=δRSTr (ΓR(αβ)AT ′R′ΓR(α−1)AS′U ′)
n!

dR

=δRSδT ′U ′δR′S′Tr (ΓR(αβ)AT ′R′ΓR(α−1)AR′T ′)
n!

dR
.

Notice that the subgroup labels have contracted exactly as if they were Chan-Paton indices.

In the last line above, we are multiplying group elements that come from different “on the

diagonal blocks”. If we now assume that we have chosen our bases of these different on the

diagonal blocks so that different blocks represent the same group element with the same

matrix, we obtain

∑

τ∈Sn

Tr T ′,R′(ΓR(α−1ταβ))Tr U ′,S′(ΓS(τ))∗ = δRSδT ′U ′δR′S′Tr T ′(ΓR(β))
n!

dR
.

Following what we did for case (I), we obtain

〈χR,R′T ′(Z)(χS,U ′S′(Z))†〉
∣

∣

∣

n,n−1,...,n−k
=

(n−k−1)!

n!dR
δR→R′T ′,S→U ′S′

∑

β∈Sn

NC(β)Tr R′(ΓR(β)).

for case (II). In this last formula we have explicitly displayed the indices that are twisted.

The delta function δR→R′T ′,S→U ′S′ is only non-zero if the complete chain of representations

used to restrict R to R′T ′ match with the representations used to restrict S to U ′S′.

F. An identity

In this appendix we will evaluate

I =
∑

β∈Sn

NC(β)Tr R′(ΓR(β)).
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The symmetric group Sn can be given an action

β|i1, i2, . . . , in〉 = |iβ(1), iβ(2), . . . , iβ(n)〉, β ∈ Sn

on the space V ⊗n with V the fundamental representation of U(N). Using the formula

〈j1, j2, . . . , jn|σ|i1, i2, . . . , in〉 = δj1
iσ(1)

δj2
iσ(2)

. . . δjn

iσ(n)
,

we easily obtain

NC(β) = δi1
iβ(1)

δi2
iβ(2)

· · · δin
iβ(n)

= Tr n(β),

where Tr n is a trace over V ⊗n. Thus, I can be rewritten as

I =
∑

β∈Sn

Tr R′(ΓR(β))Tr n(β).

In this appendix we will make use of the result, that the dimension of the irreducible

representation R of SU(N) is given by

DimN (R) =
1

n!

∑

σ∈Sn

χR(σ)NC(σ).

This follows as a consequence of the fact that the Schur polynomials compute characters

of the unitary group. See [10, 42] for a nice discussion.

Consider first the case that R′ is obtained from R by removing a single box, i.e. R′ is

an irreducible representation of Sn−1. In this case, I can be written as

I =
∑

β∈Sn|β(n)=n

(

Tr R′(ΓR(β))Tr n(β) +

n−1
∑

i=1

Tr R′(ΓR((i, n)β))Tr n((i, n)β)

)

.

It is a simple matter to see that

Tr n(β) = NTr n((i, n)β),

so that

I =
1

N

∑

β∈Sn|β(n)=n

Tr R′

((

N +

n−1
∑

i=1

ΓR((i, n))

)

ΓR(β)

)

Tr n(β)

=
1

N

∑

β∈Sn|β(n)=n

cR,R′Tr R′ (ΓR(β)) Tr n(β), (F.1)

where cR,R′ is the weight of the box that must be removed to obtain R′ from R. Writing

this in terms of the Sn−1 subgroup we have

I = cR,R′

∑

β∈Sn−1

χR′(β)Tr n−1(β) = (n − 1)!cR,R′DimN (R′).
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Next consider the case that R′ is obtained from R by removing two boxes, i.e. R′ is

an irreducible representation of Sn−2. Removing one box R → R̄; removing a second box,

R̄ → R′. Start by writing I as

I =
∑

β∈Sn|β(n)=n

(

Tr R′(ΓR(β))Tr n(β) +

n−1
∑

i=1

Tr R′(ΓR((i, n)β))Tr n((i, n)β)

)

=
1

N

∑

β∈Sn|β(n)=n

Tr R′

((

N +

n−1
∑

i=1

ΓR((i, n))

)

ΓR(β)

)

Tr n(β)

=
1

N

∑

β∈Sn|β(n)=n

cR,R̄Tr R′ (ΓR(β)) Tr n(β), (F.2)

where cR,R̄ is the weight of the box that must be removed to obtain R̄ from R. We can

rewrite this again

I =
1

N

∑

β∈Sn|β(n)=n,β(n−1)=n−1

cR,R̄

(

Tr R′(ΓR(β))Tr n(β)+
n−2
∑

i=1

Tr R′(ΓR((i, n−1)β))Tr n((i, n−1)β)

)

=
1

N2

∑

β∈Sn|β(n)=n,β(n−1)=n−1

cR,R̄Tr R′

((

N +
n−2
∑

i=1

ΓR((i, n − 1))

)

ΓR(β)

)

Tr n(β)

=
1

N2

∑

β∈Sn|β(n)=n,β(n−1)=n−1

cR,R̄cR̄,R′Tr R′ (ΓR(β)) Tr n(β), (F.3)

where cR̄,R′ is the weight of the box that must be removed from R̄ to obtain R′. Writing

this in terms of the Sn−2 subgroup we have

I = cR,R′cR̄,R′

∑

β∈Sn−2

χR′(β)Tr n−2(β) = (n − 2)!cR,R′cR̄,R′DimN (R′).

These arguments can be extended to the general case where k boxes need to be removed

from R to obtain R′. The result is

∑

β∈Sn

NC(β)Tr R′(ΓR(β)) = (n − k)!

(

∏

i

ci

)

DimN (R′),

where (
∏

i ci) is the product of the weights associated to the boxes that must be removed

from R to obtain R′. Some straightforward algebra gives

1

dR′

∑

β∈Sn

NC(β)Tr R′(ΓR(β)) = fR,

where fR is the quantity defined in section 2.1. Note that the traces run over an irreducible

representation R′. If the trace were to run over an “off the diagonal block” the result would

be zero.
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G. Open string correlators

In this appendix, we will start by computing the two point function of the open string word

W i
j = (Y J)ij . Recall that the super Yang-Mills theory we study has a U(N) symmetry.

The Higgs field Y transforms in the adjoint representation of this U(N). Consistency with

the conservation of this U(N) charge implies that

〈(Y J)ij(Y
†J )lk〉 = Aδi

jδ
l
k + Bδi

kδ
l
j .

Determining this two point function amounts to determining A and B. This two point

function may be contracted in two different ways to obtain

N2A + NB = 〈Tr (Y J)Tr (Y †J )〉,
NA + N2B = 〈Tr (Y JY †J)〉.

The free field theory Schwinger-Dyson equation

0 =

∫

dY dY † ∂

∂Y i
j

[

Tr (Y J+1)(Y J†)ije
−S

]

, S = Tr (Y Y †),

implies that

〈Tr (Y J+1)Tr ((Y †)J+1)〉 = (J + 1)〈Tr (Y JY †J )〉.
Thus, we need to solve

N2A + NB = 〈Tr (Y J)Tr (Y †J )〉,
NA + N2B =

1

J + 1
〈Tr (Y J+1)Tr ((Y †)J+1)〉.

It is now simple to obtain

A =
1

N3 − N

[

N〈Tr (Y J)Tr (Y †J)〉 − 1

J + 1
〈Tr (Y J+1)Tr (Y †)J+1)〉

]

,

B =
1

N3 − N

[

N

J + 1
〈Tr (Y J+1)Tr (Y †)J+1)〉 − 〈Tr (Y J)Tr (Y †J )〉

]

.

A and B are now easily obtained upon using the exact result [20, 43]

〈Tr (Y J)Tr (Y †J)〉 =
N

J + 1

(

(N + J)!

N !
− (N − 1)!

(N − J − 1)!

)

.

Their large N expansion is

A = (J − 1)NJ−2 +
(J − 1)(J − 2)(J − 3)(J2 + 3J + 4)

24
NJ−4 + O(J9NJ−6),

B = NJ−1 +
(J − 1)(J − 2)(J2 + 5J + 12)

24
NJ−3 + O(J8NJ−5).

For the amplitude for closed string emission from an excited D-brane state, we need to com-

pute the leading contribution to the correlator 〈Tr (Y J)(Y †J)lk〉. This is easily computed

from the results we have so far, as

〈Tr (Y J)(Y †J)lk〉 = 〈δj
i (Y

J)ij(Y
†J)lk〉 = (AN + B)δl

k.
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To study the splitting and joining of open strings attached to giant gravitons, we will

need to evaluate three point functions of open string words. Again, consistency with the

global U(N) symmetry allows us to write

〈(Y J1)ji (Y
J2)lk((Y

†)J1+J2)qp〉 = aδj
i δ

l
kδq

p + bδl
iδ

j
kδ

q
p + cδj

i δ
q
kδ

l
p + dδq

i δ
l
kδ

j
p + eδl

iδ
q
kδ

j
p + fδq

i δ
j
kδ

l
p.

Not all of the coefficients we have introduced are independent. Indeed, under J1 ↔ J2 we

have c ↔ d and e ↔ f . This three point function may be contracted in six different ways

to obtain

〈Tr (Y J1)Tr (Y J2)Tr ((Y †)J1+J2)〉 = N3a + N2(b + c + d) + N(e + f),

〈Tr (Y J1+J2)Tr ((Y †)J1+J2)〉 = N3b + N2(a + e + f) + N(c + d),

〈Tr (Y J1)Tr (Y J2(Y †)J1+J2)〉 = N3c + N2(a + e + f) + N(b + d),

〈Tr (Y J2)Tr (Y J1(Y †)J1+J2)〉 = N3d + N2(a + e + f) + N(b + c),

〈Tr (Y J1+J2(Y †)J1+J2)〉 = N3e + N2(b + c + d) + N(a + f),

〈Tr (Y J1+J2(Y †)J1+J2)〉 = N3f + N2(b + c + d) + N(e + a).

Solving these equations simultaneously, we find

a =
1

(N2 − 1)(N2 − 4)

[

N2 − 2

N
〈Tr (Y J1)Tr (Y J2)Tr ((Y †)J1+J2)〉

−〈Tr (Y J1+J2)Tr ((Y †)J1+J2)〉 − 〈Tr (Y J1)Tr (Y J2(Y †)J1+J2)〉
− 〈Tr (Y J2)Tr (Y J1(Y †)J1+J2)〉 +

4

N
〈Tr (Y J1+J2(Y †)J1+J2)〉

]

,

b =
1

(N2 − 1)(N2 − 4)

[

−〈Tr (Y J1)Tr (Y J2)Tr ((Y †)J1+J2)〉

+
N2 − 2

N
〈Tr (Y J1+J2)Tr ((Y †)J1+J2)〉 +

2

N
〈Tr (Y J1)Tr (Y J2(Y †)J1+J2)〉

+
2

N
〈Tr (Y J2)Tr (Y J1(Y †)J1+J2)〉 − 2〈Tr (Y J1+J2(Y †)J1+J2)〉

]

,

c =
1

(N2 − 1)(N2 − 4)

[

−〈Tr (Y J1)Tr (Y J2)Tr ((Y †)J1+J2)〉

+
2

N
〈Tr (Y J1+J2)Tr ((Y †)J1+J2)〉 +

N2 − 2

N
〈Tr (Y J1)Tr (Y J2(Y †)J1+J2)〉

+
2

N
〈Tr (Y J2)Tr (Y J1(Y †)J1+J2)〉 − 2〈Tr (Y J1+J2(Y †)J1+J2)〉

]

,

d =
1

(N2 − 1)(N2 − 4)

[

−〈Tr (Y J1)Tr (Y J2)Tr ((Y †)J1+J2)〉

+
2

N
〈Tr (Y J1+J2)Tr ((Y †)J1+J2)〉 +

2

N
〈Tr (Y J1)Tr (Y J2(Y †)J1+J2)〉

+
N2 − 2

N
〈Tr (Y J2)Tr (Y J1(Y †)J1+J2)〉 − 2〈Tr (Y J1+J2(Y †)J1+J2)〉

]

,

e = f =
1

(N2 − 1)(N2 − 4)

[

2

N
〈Tr (Y J1)Tr (Y J2)Tr ((Y †)J1+J2)〉

−〈Tr (Y J1+J2)Tr ((Y †)J1+J2)〉 − 〈Tr (Y J1)Tr (Y J2(Y †)J1+J2)〉
− 〈Tr (Y J2)Tr (Y J1(Y †)J1+J2)〉 + N〈Tr (Y J1+J2(Y †)J1+J2)〉

]

,

– 68 –



J
H
E
P
0
6
(
2
0
0
7
)
0
7
4

The only new correlators appearing are of the type 〈Tr (Y J2)Tr (Y J1(Y †)J1+J2)〉 and

〈Tr (Y J1)Tr (Y J2)Tr ((Y †)J1+J2)〉. The free field theory Schwinger-Dyson equation

0 =

∫

dY dY † ∂

∂Y i
j

[

Tr (Y J1)Tr (Y J2)((Y J1+J2−1)†)ije
−S

]

, S = Tr (Y Y †),

implies that

〈Tr (Y J1)Tr (Y J2)Tr ((Y †)J1+J2)〉 = J1〈Tr (Y J1−1Y †J1+J2−1)Tr (Y J2)〉
+J2〈Tr (Y J2−1Y †J1+J2−1)Tr (Y J1)〉.

The exact three point function is known

〈Tr (Y J1)Tr (Y J2)Tr ((Y †)J1+J2)〉 =
1

J1 + J2 + 1

(

(N + J1 + J2)!

(N − 1)!
− (N + J2)!

(N − J1 − 1)!

− (N + J1)!

(N − J2 − 1)!
+

N !

(N − J1 − J2 − 1)!

)

.

We will not need these exact expressions. Rather, assuming that Ji√
N

≪ 1 for i = 1, 2 we

can easily estimate the leading order behavior

〈Tr (Y J)Tr ((Y †)J)〉 = JNJ ,

〈Tr (Y J(Y †)J)〉 = NJ+1,

〈Tr (Y J1)Tr (Y J2)Tr ((Y †)J1+J2)〉 = NJ1+J2−1J1J2(J1 + J2),

〈Tr (Y J1)Tr (Y J2(Y †)J1+J2)〉 = J1(J2 + 1)NJ1+J2,

and thus,

a = (J1J2(J1 + J2) + 2J1J2 + 4) NJ1+J2−4,

b = (J1 + J2 − 2)NJ1+J2−3,

c = (J1J2 + J1 − 2)NJ1+J2−3,

d = (J1J2 + J2 − 2)NJ1+J2−3,

e = f = NJ1+J2−2.

The leading contribution comes from the terms e and f , as expected from their index

structure.

Finally, for the amplitude for closed string emission from an excited D-brane state to

leave another excited D-brane state, we need to compute the leading contribution to the

correlator 〈Tr (Y J1)(Y J2)ij(Y
†(J1+J2))lk〉. This is easily computed from the results we have

so far, as

〈Tr (Y J1)(Y J2)ij(Y
†(J1+J2))lk = J1(J2 + 1)NJ1+J2−2δi

kδ
l
j .

H. String splitting correlator

To evaluate the amplitude for string splitting, we needed to evaluate the correlator

I =
1

((n−2)!)2

∑

σ∈Sn

∑

τ∈Sn−1

Tr R′′(ΓR(σ))Tr S′(ΓS(τ))∗〈
n−2
∏

k=1

Zik
iσ(k)

(Z†)jτ (k)
jk

〉δin
iσ(n−1)

δ
in−1

jn−1
δ
jτ(n−1)

iσ(n)
.
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R′′ is obtained by removing two blocks from R; S′ by removing one block from S. Denote

the chain of subgroups used for the two block restriction by R → R′ → R′′. The details of

the computation of the above correlator are summarized in this appendix. In section 3.3,

two terms contribute to the correlator. Although we only explicitly deal with one of the

terms, for the piece of the correlator that we consider in this appendix (i.e. the piece which

is independent of the open string words), the two contributions are equal.

Set σ = ψP where P = (n, n − 1). Clearly,

σ(k) = ψP (k) = ψ(k), k ≤ n − 2

= ψ(n), k = n − 1

= ψ(n−1), k = n

Thus,

I =
1

((n−2)!)2

∑

σ∈Sn

∑

τ∈Sn−1

Tr R′′(ΓR(σP ))Tr S′(ΓS(τ))∗〈
n−2
∏

k=1

Zik
iσ(k)

(Z†)jτ (k)
jk

〉δin
iσ(n)

δ
in−1

jn−1
δ
jτ(n−1)

iσ(n−1)
.

Introducing

χ̃
(1)
R,R′′(Z,W ) =

1

(n − 1)!

∑

σ∈Sn

Tr R′′ (ΓR(σP )) Zi1
iσ(1)

· · ·Zin−1

iσ(n−1)
W in

iσ(n)
,

χS,S′(Z) =
1

(n − 1)!

∑

σ∈Sn−1

Tr S′ (ΓS(σ)) Zi1
iσ(1)

· · ·Zin−1

iσ(n−1)
,

the above correlator can be interpreted as I = (n − 1)2〈DW χ̃
(1)
R,R′′χ

†
S,S′〉

∣

∣

∣

n−1
. The reduc-

tion formula for χ̃
(1)
R,R′′ can be derived in exactly the same way as for restricted Schur

polynomials; the result is the same:

(n − 1)2〈DW χ̃
(1)
R,R′′χ

†
S,S′〉

∣

∣

∣

n−1
= cRR′(n − 1)2〈χ̃R,R′′χ†

S,S′〉
∣

∣

∣

n−1
,

where cRR′ is the weight of the box that must be removed from R to obtain R′ and

χ̃R,R′′(Z) =
1

(n − 1)!

∑

σ∈Sn|α(n)=n

Tr R′′ (ΓR(σP )) Zi1
iσ(1)

· · ·Zin−1

iσ(n−1)
= χ̃R′,R′′(Z).

Using the techniques of appendix E, we find

〈χ̃R′,R′′χ†
S,S′〉

∣

∣

∣

n−1
=

1

((n − 1)!)2

∑

τ,β∈Sn−1

∑

α∈Sn−1|α(n−1)=n−1

Tr R′′

(

ΓR(α−1ταβP )
)

×Tr S′ (ΓS(τ))∗ NC(β).

Using the fundamental orthogonality relation exactly as in appendix E, it is not difficult

to compute the sum

∑

τ∈Sn−1

Tr R′′

(

ΓR(α−1ταβP )
)

Tr S′ (ΓS(τ))∗ = δR′SδR′′S′

(n − 1)!

dR′

Tr R′′ (ΓR(βP )) ,
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and hence to obtain (we have summed over α)

〈χ̃R′,R′′χ†
S,S′〉

∣

∣

∣

n−1
= δR′SδR′′S′

1

(n − 1)dR′

∑

β∈Sn−1

Tr R′′ (ΓR(βP )) NC(β). (H.1)

To compute this last sum, note that P commutes with every element of Sn−2 and thus by

Schur’s Lemma, when acting on the R′′ subspace we can replace

ΓR(P )|R′′ = ΓR ((n, n − 1)) |R′′ → Tr R′′ ((n, n − 1))

dR′′

1R′′ ,

with 1R′′ the identity on the R′′ subspace. To use this replacement in (H.1), use the

techniques of appendix F to write

∑

β∈Sn−1

Tr R′′ (ΓR(βP )) NC(β) = cR′,R′′

∑

β∈Sn−2

Tr R′′ (ΓR(βP )) NC(β).

Since β ∈ Sn−2, ΓR(β) is now diagonal in the R′′ indices, that is, P is acting only on the

R′′ subspace. It now follows that

〈χ̃R′,R′′χ†
S,S′〉

∣

∣

∣

n−1
= δR′SδR′′S′

Tr R′′ ((n, n − 1))

dR′′

cR′R′′

(n − 1)dR′

∑

β∈Sn−2

Tr R′′ (ΓR(β)) NC(β)

= δR′SδR′′S′Tr R′′ ((n, n − 1))
fR′

(n − 1)dR′

,

Using the results of appendix D, we now obtain

I = (n − 1)δR′SδR′′S′Tr R′′ ((n, n − 1))
fR

dR′

,

= (n − 1)
fRdR′′

dR′(cR,R′ − cR′,R′′)
δR′SδR′′S′ .

I. Product rule for restricted Schur polynomials

In this appendix we start by reviewing the known product rule for Schur polynomials. Our

main interest in this product rule is due to the fact that it allows a very simple computation

of a class of three point functions. We then explain how a similar rule can be obtained for

the restricted Schur polynomials, allowing the computation of a class of restricted Schur

polynomial three point correlators.

The product rule for Schur polynomials follows as a direct consequence of the duality

between the symmetric groups and the unitary groups. To develop this duality, consider the

space Sym(V ⊗n) where V denotes the fundamental representation of U(N). This space is a

representation of U(N) and also admits an action of Sn. The duality between the symmetric

and unitary groups is a direct consequence of the fact that the actions of U(N) and Sn on

Sym(V ⊗n) commute, allowing them to be simultaneously diagonalized. This also explains

why Young diagrams label both representations of U(N) and Sn. As a consequence of this

duality, the Schur polynomials are the characters of the unitary group in their irreducible

representations. The decomposition of a product of characters into a sum over characters
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is exactly the same as the decomposition of a product of two irreducible representations

of U(N) (which is in general reducible) into its irreducible components. For irreducible

representations R,S of the unitary group, it is well known that

R ⊗ S = ⊕T f(R,S;T )T,

where f(R,S;T ) are the Littlewood-Richardson coefficients. From the interpretation of

the Schur polynomials as characters, we immediately obtain

χR(Z)χS(Z) =
∑

T

f(R,S;T )χT (Z).

Using the two point correlator

〈χT (Z)χU (Z†)〉 = δTUfT ,

we find

〈χR(Z)χS(Z)χT (Z†)〉 = f(R,S;T )fT ,

in agreement with [10].

Clearly, a product rule for the restricted Schur polynomials would allow an efficient

evaluation of (a class of) three point functions of restricted Schur polynomials. It is not

obvious that such a rule even exists; indeed, the fact that the product of two Schur polyno-

mials is again a Schur polynomial is related to the fact that the Schur polynomials furnish

a basis for the symmetric functions. To explore this issue, consider the simplest case, when

an ordinary Schur polynomial is multiplied by a restricted Schur polynomial with a single

string attached, χR(Z)χ
(1)
S,S′(Z,W ). Denote the number of boxes in R by nR, the number

of boxes in S by nS and the number of boxes in S′ by nS′ . It is obvious that nS = nS′ + 1.

The product χR(Z)χ
(1)
S,S′(Z,W ) will be a sum of terms of the form

Tr (Zn1−1W )

k
∏

i=2

Tr (Zni), where

k
∑

i=1

ni = nR + nS , (I.1)

and W is the open string word. It is clear that the number of such monomials is equal to

the number of partitions of nR +nS times the number of choices of which trace will contain

W . The number of restricted Schur polynomials is given by the number of representation T

of SnR+nS
- which is equal to the number of partitions of nR+nS times the number of ways

we can restrict T to T ′ by removing a box. It is now obvious that the number of restricted

Schur polynomials with one string attached is equal to the number of monomials of the

form (I.1). This suggests that it should indeed be possible to express χR(Z)χ
(1)
S,S′(Z,W ) as

a sum over restricted Schur polynomials. To perform the required inversion, introduce the

matrix

(M−1)στ =
∑

(T,T ′)

χT,T ′(σ)χT,T ′(τ), (I.2)

where the sum on the right hand side runs over all possible labels (T, T ′) allowed for a

restricted Schur polynomial. Using this matrix, define the “dual character” (which we
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denote by a superscript)

χT,T ′

(σ) =
∑

τ

MστχT,T ′(τ).

Let σ denote the permutation for which

Tr (σWZ⊗nR+nS′ ) = Tr (Zn1W )

k
∏

i=2

Tr (Zni),

k
∑

i=1

ni = nR + nS′.

If two permutations σ, τ satisfy

Tr (σWZ⊗nR+nS′ ) = Tr (τWZ⊗nR+nS′ ),

we say they are restricted conjugate. Restricted conjugate is an equivalence relation. Denote

the number of restricted conjugate classes by NT,T ′ and let nσ
T,T ′ denote the number of

elements in restricted conjugate class with representative σ. NT,T ′ is also equal to the

number of restricted Schur polynomials. The “indices” σ and τ that appear in (I.2) run

over the restricted conjugacy classes. Then, using the definition of M , we easily find

∑

(T,T ′)

χT,T ′

(σ)χ
(1)
T,T ′(Z,W ) =

nσ
T,T ′

(nT − 1)!
Tr (σWZ⊗nR+nS′ ).

This proves that, as long as the matrix (M−1)στ is invertible, the product χRχS,S′ can be

expressed as a sum of restricted Schur polynomials.

We have checked that det(M) is non-zero for nT = 2, 3, 4 and 5. It is not difficult to

check, for example, that

χ χ 1 =
2

3
χ 1 + χ 1 +

1

3
χ

1
,

χ χ
1

=
1

3
χ 1 + χ

1
+

2

3
χ

1

.

It is now a simple matter to compute the three point correlators

〈χ χ 1 χ†
1 〉 =

3

2
N(N2 − 1)F0 + (N + 1)2N(N − 1)F1,

〈χ χ
1
χ†

1 〉 =
1

2
N(N2 − 1)F0 + (N − 1)2N(N + 1)F1.

In this appendix we have provided strong evidence for the existence of a product rule

which would resolve the product of a restricted Schur polynomial (with a single string

attached) with a Schur polynomial, in terms of restricted Schur polynomials with a single

string attached. We have given two simple examples of these products and have used the

products to compute two three point functions. We hope to report on an explicit rule and

to extend this analysis in a future article [44].
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J. Numerical results

To provide a test of the technology developed in this article, we have developed a code

to numerically evaluate the two point functions of restricted Schur polynomials. In this

appendix we will quote some of the results obtained using this code. Our goal in quoting

these results was both to give the reader confidence in our results and to provide some

answers for specific computations that can be used by the reader who wishes to test her

understanding. We have numerically computed all restricted Schur polynomials (and their

correlators) that can be obtained from representations with 5 boxes or less, by attaching

one or two strings. We will not give an exhaustive list of these results.

Our notation for the representations of S4, S3 and S2 is

R1 = , R2 = , R3 = , R4 = , R5 = ,

S1 = , S2 = , S3 = ,

T1 = , T2 = .

J.1 One string attached

〈χ(1)
A,B(χ

(1)
C,D)†〉 = αAB,CDF0 + βAB,CDF1

A = C B = D αAB,CD βAB,CD

R1 S1 4N4 + 24N3 + 44N2 + 24N N5 + 9N4 + 29N3 + 39N2 + 18N

R2 S1
4
3N4 + 8

3N3 − 4
3N2 − 8

3N N5 + N4 − 3N3 − N2 + 2N

R2 S2
8
3N4 + 16

3 N3 − 8
3N2 − 16

3 N N5 + 4N4 + 3N3 − 4N2 − 4N

R3 S2 4N4 − 4N2 N5 − N3

R4 S2
8
3N4 − 16

3 N3 − 8
3N2 + 16

3 N N5 − 4N4 + 3N3 + 4N2 − 4N

R4 S3
4
3N4 − 8

3N3 − 4
3N2 + 8

3N N5 − N4 − 3N3 + N2 + 2N

R5 S3 4N4 − 24N3 + 44N2 − 24N N5 − 9N4 + 29N3 − 39N2 + 18N

A B C D αAB,CD βAB,CD

R2 S1 R1 S1 0 N5 + 5N4 + 5N3 − 5N2 − 6N

R2 S2 R3 S2 0 N5 + 2N4 − N3 − 2N2

R3 S2 R4 S2 0 N5 − 2N4 − N3 + 2N2

R2 S2 R2 S1 0 0

J.2 Two strings attached

〈χ(1)
A,B(χ

(1)
C,D)†〉 = αAB,CDF 1

0 F 2
0 + βAB,CDF 1

0 F 2
1 + γAB,CDF 1

1 F 2
0 + δAB,CDF 1

1 F 2
1 .

For the two string examples, we describe the chain of subgroups participating in the re-

striction. We always assume that

〈(W (i))ab (W
(i′)†)a

′

b′ 〉 ∝ δii′ .
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Restriction of χ
(1)
A,B Restriction of (χ

(1)
C,D)† αAB,CD

R2 → S2 → T2 R2 → S2 → T2 4N4 + 8N3 − 4N2 − 8N

R2 → S2 → T1 R2 → S2 → T1 4N4 + 8N3 − 4N2 − 8N

R2 → S2 → T2 R2 → S2 → T1 0

Restriction of χ
(1)
A,B Restriction of (χ

(1)
C,D)† γAB,CD

R2 → S2 → T2 R2 → S2 → T2
3
2N5 + 6N4 + 9

2N3 − 6N2 − 6N

R2 → S2 → T1 R2 → S2 → T1
3
2N5 + 6N4 + 9

2N3 − 6N2 − 6N

R2 → S2 → T2 R2 → S2 → T1 0

Restriction of χ
(1)
A,B Restriction of (χ

(1)
C,D)† βAB,CD

R2 → S2 → T2 R2 → S2 → T2
3
2N5 + 6N4 + 9

2N3 − 6N2 − 6N

R2 → S2 → T1 R2 → S2 → T1
43
18N5 + 22

9 N4 − 127
18 N3 − 22

9 N2 + 14
3 N

R2 → S2 → T2 R2 → S2 → T1 0

Restriction of χ
(1)
A,B Restriction of (χ

(1)
C,D)† δAB,CD

R2 → S2 → T2 R2 → S2 → T2 N6 + 5N5 + 7N4 − N3 − 8N2 − 4N

R2 → S2 → T1 R2 → S2 → T1 N6 + 3N5 − N4 − 7N3 + 4N

R2 → S2 → T2 R2 → S2 → T1 0

In our last two string example, we will consider the correlator

〈χ 1
2

2
1

χ†
1
2

2
1

〉 = F 1
0 F 2

0 (4N4 + 8N3 − 4N2 − 8N) + F 1
0 F 2

1 (
4

9
N5 +

8

9
N4 − 4

9
N3 − 8

9
N2).

J.3 String splitting correlators

We use the following notation for representations of S5

Q1 = , Q2 = , Q3 = , Q4 = ,

Q5 = , Q6 = , Q7 = .

The correlator is

〈χ(2)
R,R′′(χ

(1)
S,S′)

†〉 = αRR′′,SS′F.

We have assumed that the open string factor in each of the two terms which contribute

to the leading result, coming from contracting the words describing the open strings, (the

terms denoted e and f in appendix G) are equal. In the tables below, we describe the

chain of subgroups participating in the restriction.
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Restriction of χ
(1)
R,R′′ Restriction of (χ

(1)
S,S′)† αRR′′,SS′

Q1 → R1 → S1 R1 → S1 8N5 + 80N4 + 280N3 + 400N2 + 192N

Q2 → R1 → S1 R1 → S1 −2N5 − 10N4 − 10N3 + 10N2 + 12N

Q2 → R2 → S1 R1 → S1 0

Q2 → R2 → S2 R2 → S2
16
3 (N5 + 5N4 + 5N3 − 5N2 − 6N)

Q3 → R2 → S2 R2 → S2 −8
3(N5 + 2N4 − N3 − 2N2)

Q4 → R4 → S2 R4 → S2
4
3

(

N5 − 5N3 + 4N
)

J.4 Three point correlators

〈χ χ
(1)
T, χ

(1)†
R,R′〉 = αT,RR′F0 + βT,RR′F1.

T Restriction of (χ
(1)
R,R′)† αT,RR′ βT,RR′

T1 S1 → T1 2N3 + 6N2 + 4N N4 + 4N3 + 5N2 + 2N

T1 S2 → T1
1
2N3 − 1

2N N4 + N3 − N2 − N

T1 S2 → T2
3
2N3 − 3

2N N4 + N3 − N2 − N

T1 S3 → T2 0 N4 − 2N3 − N2 + 2N

T2 S1 → T1 0 N4 + 2N3 − N2 − 2N

T2 S2 → T1
3
2N3 − 3

2N N4 − N3 − N2 + N

T2 S2 → T2
1
2N3 − 1

2N N4 − N3 − N2 + N

T2 S3 → T2 2N3 − 6N2 + 4N N4 − 4N3 + 5N2 − 2N

J.5 Three string correlators

〈χ†
1

2
3

χ 1
2

3

〉=F 1
0 F 2

0 F 3
0 (15N6 − 75N4 + 60N2)

+F 1
1 F 2

0 F 3
0 (8N7 + 16N6 − 40N5 − 80N4 + 32N3 + 64N2)

+F 1
0 F 2

1 F 3
0

(

17

4
N7 + N6 − 85

4
N5 − 5N4 + 17N3 + 4N2

)

+F 1
1 F 2

1 F 3
0

(

8

3
N8 +

16

3
N7 − 40

3
N6 − 80

3
N5 +

32

3
N4 +

64

3
N3

)

+F 1
0 F 2

0 F 3
1

(

1097

256
N7− 247

32
N6− 5485

256
N5+

1235

32
N4+

1097

64
N3− 247

8
N2

)

+F 1
1 F 2

0 F 3
1

(

29

12
N8 +

1

3
N7 − 253

12
N6 − 5

3
N5 +

164

3
N4 +

4

3
N3 − 36N2

)

+F 1
0 F 2

1 F 3
1

(

1145

768
N8−247

96
N7−6157

768
N6+

1235

96
N5+

1685

192
N4−247

24
N3−9

4
N2

)

+F 1
1 F 2

1 F 2
1 (N9 − 9N7 + 24N5 − 16N3).
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〈χ†
2

1
3

χ 2
1

3

〉=F 1
0 F 2

0 F 3
0 (15N6 − 75N4 + 60N2)

+F 1
1 F 2

0 F 3
0

(

20

3
N7 − 100

3
N5 +

80

3
N3

)

+F 1
0 F 2

1 F 3
0

(

59

12
N7 + 9N6 − 295

12
N5 − 45N4 +

59

3
N3 + 36N2

)

+F 1
1 F 2

1 F 3
0

(

8

3
N8 +

16

3
N7 − 40

3
N6 − 80

3
N5 +

32

3
N4 +

64

3
N3

)

+F 1
0 F 2

0 F 3
1

(

3371

768
N7 − 63

8
N6 − 16855

768
N5 +

315

8
N4 +

3371

192
N3 − 63

2
N2

)

+F 1
1 F 2

0 F 3
1

(

113

48
N8 − 14

3
N7 − 565

48
N6 +

70

3
N5 +

113

12
N4 − 56

3
N3

)

+F 1
0 F 2

1 F 3
1

(

1169

768
N8− 7

96
N79733

768
N6+

35

96
N5+

6029

192
N4− 7

24
N3− 81

4
N2

)

+F 1
1 F 2

1 F 2
1 (N9 − 9N7 + 24N5 − 16N3).
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